These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 34807020)

  • 1. Modal decomposition of complex optical fields using convolutional neural networks.
    Schiworski MG; Brown DD; Ottaway DJ
    J Opt Soc Am A Opt Image Sci Vis; 2021 Nov; 38(11):1603-1611. PubMed ID: 34807020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast modal analysis for Hermite-Gaussian beams via deep learning.
    An Y; Hou T; Li J; Huang L; Leng J; Yang L; Zhou P
    Appl Opt; 2020 Mar; 59(7):1954-1959. PubMed ID: 32225712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNN-based few-mode fiber modal decomposition method using digital holography.
    Zhu ZH; Xiao YY; Yao RM
    Appl Opt; 2021 Aug; 60(24):7400-7405. PubMed ID: 34613029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning to decompose the modes in few-mode fibers with deep convolutional neural network.
    An Y; Huang L; Li J; Leng J; Yang L; Zhou P
    Opt Express; 2019 Apr; 27(7):10127-10137. PubMed ID: 31045158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing modal power in multi-mode waveguide via machine learning.
    Liu A; Lin T; Han H; Zhang X; Chen Z; Gan F; Lv H; Liu X
    Opt Express; 2018 Aug; 26(17):22100-22109. PubMed ID: 30130908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modal decomposition of an incoherent combined laser beam based on the combination of residual networks and a stochastic parallel gradient descent algorithm.
    Chen F
    Appl Opt; 2022 May; 61(14):4120-4131. PubMed ID: 36256088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histopathological image classification with bilinear convolutional neural networks.
    Chaofeng Wang ; Jun Shi ; Qi Zhang ; Shihui Ying
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4050-4053. PubMed ID: 29060786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse mode analysis for free-space laser beams using Bayesian analysis.
    Liu P; Yan J; Li W; Wu YK
    Appl Opt; 2021 Apr; 60(12):3344-3352. PubMed ID: 33983238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks.
    Liu X; Jiang D; Wang M; Song Z
    Med Biol Eng Comput; 2019 May; 57(5):1037-1048. PubMed ID: 30523534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focal field analysis of highly multi-mode fiber beams based on modal decomposition.
    Pang H; Haecker T; Bense A; Haist T; Flamm D
    Appl Opt; 2020 Aug; 59(22):6584-6592. PubMed ID: 32749358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-modal image fusion workflow incorporating MALDI imaging mass spectrometry and microscopy for the study of small pharmaceutical compounds.
    Liang Z; Guo Y; Sharma A; McCurdy CR; Prentice BM
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image reconstruction through a multimode fiber with a simple neural network architecture.
    Zhu C; Chan EA; Wang Y; Peng W; Guo R; Zhang B; Soci C; Chong Y
    Sci Rep; 2021 Jan; 11(1):896. PubMed ID: 33441671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of a field with smooth wavefront into a set of Gaussian beams with non-zero curvatures.
    Worku NG; Hambach R; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1091-1102. PubMed ID: 30110301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning.
    Ma Z; Zhou S; Wu X; Zhang H; Yan W; Sun S; Zhou J
    Phys Med Biol; 2019 Jan; 64(2):025005. PubMed ID: 30524024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront reconstruction by modal decomposition.
    Schulze C; Naidoo D; Flamm D; Schmidt OA; Forbes A; Duparré M
    Opt Express; 2012 Aug; 20(18):19714-25. PubMed ID: 23037024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.
    Khellal A; Ma H; Fei Q
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.