These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34807045)

  • 1. Ultrasound liquid crystal lens with a variable focus in the radial direction for image stabilization.
    Onaka J; Iwase T; Emoto A; Koyama D; Matsukawa M
    Appl Opt; 2021 Nov; 60(33):10365-10371. PubMed ID: 34807045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound liquid crystal lens with enlarged aperture using traveling waves.
    Onaka J; Iwase T; Fukui M; Koyama D; Matsukawa M
    Opt Lett; 2021 Mar; 46(5):1169-1172. PubMed ID: 33649684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Orientation in a Variable-Focus Liquid Crystal Lens Induced by Ultrasound Vibration.
    Harada Y; Koyama D; Fukui M; Emoto A; Nakamura K; Matsukawa M
    Sci Rep; 2020 Apr; 10(1):6168. PubMed ID: 32277091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2720-6. PubMed ID: 23443707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novelly universal theory: Toward accurately evaluating radial vibration characteristics for radially sandwiched spherical piezoelectric transducer.
    Wang S; Lin S
    Ultrasonics; 2021 Mar; 111():106299. PubMed ID: 33246257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varifocal Concave-Convex Lens Using Viscoelastic Gel and Ultrasound Vibration.
    Hashimoto S; Harada Y; Nakamura K; Iwase T; Onaka J; Matsukawa M; Koyama D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2703-2710. PubMed ID: 35905066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.
    Feng GH; Liu JH
    Appl Opt; 2013 Feb; 52(4):829-37. PubMed ID: 23385925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast axial scanning for 2-photon microscopy using liquid lens technology.
    Tehrani KF; Sun MK; Karumbaiah L; Mortensen LJ
    Proc SPIE Int Soc Opt Eng; 2017 Mar; 10070():. PubMed ID: 29706682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact, high-speed variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    Opt Express; 2010 Nov; 18(24):25158-69. PubMed ID: 21164862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric Shape Optimization of Lens-Focused Piezoelectric Ultrasound Transducers.
    Thomas GPL; Chapelon JY; Bera JC; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):844-850. PubMed ID: 29733286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature adjustable-focus endoscope with a solid electrically tunable lens.
    Zou Y; Zhang W; Chau FS; Zhou G
    Opt Express; 2015 Aug; 23(16):20582-92. PubMed ID: 26367911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid crystal lens with a shiftable optical axis.
    Feng W; Liu Z; Ye M
    Opt Express; 2023 May; 31(10):15523-15536. PubMed ID: 37157652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-crystal intraocular adaptive lens with wireless control.
    Simonov AN; Vdovin G; Loktev M
    Opt Express; 2007 Jun; 15(12):7468-78. PubMed ID: 19547070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varifocal optical lens using ultrasonic vibration and thixotropic gel.
    Sakata D; Iwase T; Onaka J; Koyama D; Matsukawa M
    J Acoust Soc Am; 2021 Jun; 149(6):3954. PubMed ID: 34241470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustable hybrid diffractive/refractive achromatic lens.
    Valley P; Savidis N; Schwiegerling J; Dodge MR; Peyman G; Peyghambarian N
    Opt Express; 2011 Apr; 19(8):7468-79. PubMed ID: 21503055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-crystal lens with a focal length that is variable in a wide range.
    Ye M; Wang B; Sato S
    Appl Opt; 2004 Dec; 43(35):6407-12. PubMed ID: 15617277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically tunable soft solid lens inspired by reptile and bird accommodation.
    Pieroni M; Lagomarsini C; De Rossi D; Carpi F
    Bioinspir Biomim; 2016 Oct; 11(6):065003. PubMed ID: 27783568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.