These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34807094)

  • 61. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene.
    Chatzakis I; Li Z; Benderskii AV; Cronin SB
    Nanoscale; 2017 Jan; 9(4):1721-1726. PubMed ID: 28091664
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optically controlled terahertz modulator by liquid-exfoliated multilayer WS
    Yang DS; Jiang T; Cheng XA
    Opt Express; 2017 Jul; 25(14):16364-16377. PubMed ID: 28789141
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intensity-modulating graphene metamaterial for multiband terahertz absorption.
    Gao RM; Xu ZC; Ding CF; Yao JQ
    Appl Opt; 2016 Mar; 55(8):1929-33. PubMed ID: 26974784
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure.
    Peng Y; Zang X; Zhu Y; Shi C; Chen L; Cai B; Zhuang S
    Opt Express; 2015 Feb; 23(3):2032-9. PubMed ID: 25836074
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Review of THz Modulators with Dynamic Tunable Metasurfaces.
    Wang L; Zhang Y; Guo X; Chen T; Liang H; Hao X; Hou X; Kou W; Zhao Y; Zhou T; Liang S; Yang Z
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266235
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon.
    Liu X; Liu H; Sun Q; Huang N
    Appl Opt; 2015 Apr; 54(11):3478-83. PubMed ID: 25967340
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications.
    Shur M; Aizin G; Otsuji T; Ryzhii V
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883910
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene.
    Degl'Innocenti R; Jessop DS; Shah YD; Sibik J; Zeitler JA; Kidambi PR; Hofmann S; Beere HE; Ritchie DA
    ACS Nano; 2014 Mar; 8(3):2548-54. PubMed ID: 24558983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors.
    Fauzi N; Mohd Asri RI; Mohamed Omar MF; Manaf AA; Kawarada H; Falina S; Syamsul M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838025
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient Control of THz Transmission of PEDOT:PSS with Resonant Nano-Metamaterials.
    Chaudhary RP; Das B; Oh SI; Kim DS
    Sci Rep; 2019 Nov; 9(1):17681. PubMed ID: 31776406
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep THz modulation at Fabry-Perot resonances using graphene in periodic microslits.
    Liu X; Jia M; Fan S; Stantchev RI; Chen X; Pickwell-Macpherson E; Sun Y
    Opt Express; 2021 Feb; 29(4):6199-6208. PubMed ID: 33726146
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Active terahertz modulator based on optically controlled organometal halide perovskite MAPbI
    Wang H; Ling F; Luo C; Li D; Xiao Y; Chang Z; Xu Z; Zeng Y; Wang W; Yao J
    Appl Opt; 2022 Feb; 61(5):1171-1176. PubMed ID: 35201169
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology.
    Lin YS; Huang ST; Hsu SS; Tang KY; Yen TJ; Yao DJ
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744518
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
    Hor YL; Szabó Z; Lim HC; Federici JF; Li EP
    Appl Opt; 2010 Mar; 49(8):1179-84. PubMed ID: 20220872
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Voltage-tunable dual-layer terahertz metamaterials.
    Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X
    Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spectrally wide-band terahertz wave modulator based on optically tuned graphene.
    Weis P; Garcia-Pomar JL; Höh M; Reinhard B; Brodyanski A; Rahm M
    ACS Nano; 2012 Oct; 6(10):9118-24. PubMed ID: 22992128
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings.
    Zang X; Shi C; Chen L; Cai B; Zhu Y; Zhuang S
    Sci Rep; 2015 Mar; 5():8901. PubMed ID: 25754618
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial.
    Wang J; Tian H; Wang Y; Li X; Cao Y; Li L; Liu J; Zhou Z
    Opt Express; 2018 Mar; 26(5):5769-5776. PubMed ID: 29529778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.