These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34807096)

  • 1. Intensity-tunable terahertz bandpass filters based on liquid crystal integrated metamaterials.
    Xu ST; Fan F; Wang YH; Yang T; Cao HZ; Chang SJ
    Appl Opt; 2021 Oct; 60(30):9530-9534. PubMed ID: 34807096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-band terahertz linear polarization converter based on carbon nanotube integrated metamaterial.
    Xu ST; Fan F; Ji YY; Chang SJ
    Opt Express; 2021 Mar; 29(6):8824-8833. PubMed ID: 33820324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz polarization-maintaining subwavelength filters.
    Li H; Atakaramians S; Yuan J; Xiao H; Wang W; Li Y; Wu B; Han Z
    Opt Express; 2018 Oct; 26(20):25617-25629. PubMed ID: 30469661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals.
    Vasić B; Zografopoulos DC; Isić G; Beccherelli R; Gajić R
    Nanotechnology; 2017 Mar; 28(12):124002. PubMed ID: 28220761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator.
    Wang Z; Dong G; Yuan S; Chen L; Wu X; Zhang X
    Opt Lett; 2019 Oct; 44(19):4670-4673. PubMed ID: 31568413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.
    Hu F; Fan Y; Zhang X; Jiang W; Chen Y; Li P; Yin X; Zhang W
    Opt Lett; 2018 Jan; 43(1):17-20. PubMed ID: 29328226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple interference theoretical model for graphene metamaterial-based tunable broadband terahertz linear polarization converter design and optimization.
    Lin R; Lu F; He X; Jiang Z; Liu C; Wang S; Kong Y
    Opt Express; 2021 Sep; 29(19):30357-30370. PubMed ID: 34614761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient and tunable terahertz polarization converter based on double subwavelength metallic gratings infiltrated with liquid crystal.
    Yang J; Zhang G; Xu L; Li Y; Deng G; Yin Z; Lu H
    Appl Opt; 2022 Oct; 61(28):8265-8272. PubMed ID: 36256138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable dual-band terahertz metamaterial bandpass filters.
    Zhu Y; Vegesna S; Zhao Y; Kuryatkov V; Holtz M; Fan Z; Saed M; Bernussi AA
    Opt Lett; 2013 Jul; 38(14):2382-4. PubMed ID: 23939055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Throughput Laser Process of Transparent Conducting Surfaces for Terahertz Bandpass Ultrathin Metamaterials.
    Wang Q; Raglione M; Li B; Jin X; Toor F; Arnold M; Ding H
    Sci Rep; 2019 Feb; 9(1):3083. PubMed ID: 30816138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide-graphene integrated configuration.
    Tang B; Ren Y
    Phys Chem Chem Phys; 2022 Apr; 24(14):8408-8414. PubMed ID: 35333265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-supported tunable bidirectional terahertz metamaterials absorbers.
    Peng J; Leng J; Cao D; He X; Lin F; Liu F
    Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.
    Khodaee M; Banakermani M; Baghban H
    Appl Opt; 2015 Oct; 54(29):8617-24. PubMed ID: 26479795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells.
    Chen CC; Chiang WF; Tsai MC; Jiang SA; Chang TH; Wang SH; Huang CY
    Opt Lett; 2015 May; 40(9):2021-4. PubMed ID: 25927774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable Multifunctional Terahertz Metamaterials Based on the Phase-Transition Properties of Vanadium Dioxide.
    Sun Z; Wang X; Wang J; Li H; Lu Y; Zhang Y
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active terahertz beam deflection based on a phase gradient metasurface with liquid crystal-enhanced cavity mode conversion.
    Ji Y; Jiang X; Fan F; Zhao H; Cheng J; Wang X; Chang S
    Opt Express; 2023 Jan; 31(2):1269-1281. PubMed ID: 36785166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb.
    Fan F; Xu ST; Wang XH; Chang SJ
    Opt Express; 2016 Nov; 24(23):26431-26443. PubMed ID: 27857376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial.
    Yang J; Wang P; Shi T; Gao S; Lu H; Yin Z; Lai W; Deng G
    Opt Express; 2019 Sep; 27(19):27039-27045. PubMed ID: 31674572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures.
    Lan F; Yang Z; Qi L; Gao X; Shi Z
    Opt Lett; 2014 Apr; 39(7):1709-12. PubMed ID: 24686585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.