These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34807099)

  • 1. Sensorless astigmatism correction using a variable cross-cylinder for high lateral resolution optical coherence tomography in a human retina.
    Tamura M; Moriguchi Y; Yeh SY; Matsumoto A; Shibutani M; Asao T; Mino T; Nakanishi M; Kubota A; Akiba M
    Appl Opt; 2021 Oct; 60(30):9553-9559. PubMed ID: 34807099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction.
    Reddikumar M; Tanabe A; Hashimoto N; Cense B
    J Biomed Opt; 2017 Feb; 22(2):26005. PubMed ID: 28195602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Results of optical coherence tomography of the retina and optic nerve in keratoconus].
    Averich VV; Avetisov SE; Voronin GV
    Vestn Oftalmol; 2021; 137(5. Vyp. 2):275-280. PubMed ID: 34669338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography.
    Miller DT; Kurokawa K
    Annu Rev Vis Sci; 2020 Sep; 6():115-148. PubMed ID: 32609578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution OCT balloon imaging catheter with astigmatism correction.
    Xi J; Huo L; Wu Y; Cobb MJ; Hwang JH; Li X
    Opt Lett; 2009 Jul; 34(13):1943-5. PubMed ID: 19571960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions.
    Liu C; Wong A; Fieguth P; Bizheva K; Bie H
    BMC Med Imaging; 2014 Oct; 14():37. PubMed ID: 25319186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography.
    Camino A; Ng R; Huang J; Guo Y; Ni S; Jia Y; Huang D; Jian Y
    Opt Lett; 2020 May; 45(9):2612-2615. PubMed ID: 32356829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal imaging with optical coherence tomography and low-loss adaptive optics using a 2.8-mm beam size.
    Maddipatla R; Cervantes J; Otani Y; Cense B
    J Biophotonics; 2019 Jun; 12(6):e201800192. PubMed ID: 30328279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational aberration correction in spatiotemporal optical coherence (STOC) imaging.
    Borycki D; Auksorius E; Węgrzyn P; Wojtkowski M
    Opt Lett; 2020 Mar; 45(6):1293-1296. PubMed ID: 32163948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography.
    Hoffmann PC; Abraham M; Hirnschall N; Findl O
    Curr Eye Res; 2014 Dec; 39(12):1178-86. PubMed ID: 25310575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorless adaptive-optics optical coherence tomographic angiography.
    Camino A; Zang P; Athwal A; Ni S; Jia Y; Huang D; Jian Y
    Biomed Opt Express; 2020 Jul; 11(7):3952-3967. PubMed ID: 33014578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of static and dynamic ocular aberrations on full-field optical coherence tomography for in vivo high-resolution retinal imaging.
    Cai Y; Thouvenin O; Grieve K; Mecê P
    Opt Lett; 2024 May; 49(9):2209-2212. PubMed ID: 38691681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope.
    Wells-Gray EM; Choi SS; Zawadzki RJ; Finn SC; Greiner C; Werner JS; Doble N
    J Biomed Opt; 2018 Mar; 23(3):1-15. PubMed ID: 29508564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients.
    Polans J; Cunefare D; Cole E; Keller B; Mettu PS; Cousins SW; Allingham MJ; Izatt JA; Farsiu S
    Opt Lett; 2017 Jan; 42(1):17-20. PubMed ID: 28059209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of contact lens on optical coherence tomography imaging of rodent retina.
    Liu X; Wang CH; Dai C; Camesa A; Zhang HF; Jiao S
    Curr Eye Res; 2013 Dec; 38(12):1235-40. PubMed ID: 24000814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?
    Baghaie A; Yu Z; D'Souza RM
    Med Image Anal; 2017 Apr; 37():129-145. PubMed ID: 28208100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive-glasses time-domain FFOCT for wide-field high-resolution retinal imaging with increased SNR.
    Scholler J; Groux K; Grieve K; Boccara C; Mecê P
    Opt Lett; 2020 Nov; 45(21):5901-5904. PubMed ID: 33137028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
    Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.