These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34807118)
1. Photonic generation of a dual-chirp waveform with an optoelectronic oscillator based on stimulated Brillouin scattering. Zhou W; Wang D; Du C; Ding Y; Dong W Appl Opt; 2021 Nov; 60(32):10120-10123. PubMed ID: 34807118 [TBL] [Abstract][Full Text] [Related]
2. Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. Zeng Z; Zhang L; Zhang Y; Zhang Z; Zhang S; Zhang Y; Sun B; Liu Y Opt Express; 2020 Apr; 28(9):13861-13870. PubMed ID: 32403852 [TBL] [Abstract][Full Text] [Related]
3. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser. Zhou P; Chen H; Li N; Zhang R; Pan S Opt Lett; 2020 Mar; 45(6):1342-1345. PubMed ID: 32163961 [TBL] [Abstract][Full Text] [Related]
4. Stable and finely tunable optoelectronic oscillator based on stimulated Brillouin scattering and an electro-optic frequency shift. Zeng Z; Zhang Z; Zhang L; Zhang S; Zhang Y; Sun B; Liu Y Appl Opt; 2020 Jan; 59(3):589-594. PubMed ID: 32225181 [TBL] [Abstract][Full Text] [Related]
5. Multiband LFM waveform generation and band-selection using stimulated Brillouin scattering. Dhawan R; Parida D; Parihar R; Jha M; Choudhary A Appl Opt; 2023 Sep; 62(25):6737-6745. PubMed ID: 37706806 [TBL] [Abstract][Full Text] [Related]
6. Wideband tunable optoelectronic oscillator based on stimulated Brillouin scattering and a Mach-Zehnder interferometer. Qu S; Zhou W; Zhou Y; Dong W Appl Opt; 2021 Aug; 60(22):6554-6559. PubMed ID: 34612893 [TBL] [Abstract][Full Text] [Related]
7. Photonic generation of multiband and multi-format microwave signals based on a single modulator. Wang L; Li G; Hao T; Zhu S; Li M; Zhu N; Li W Opt Lett; 2020 Nov; 45(22):6190-6193. PubMed ID: 33186947 [TBL] [Abstract][Full Text] [Related]
8. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading. Fan X; Zhu S; Du J; Li M; Zhu NH; Li W Opt Lett; 2021 Feb; 46(4):868-871. PubMed ID: 33577534 [TBL] [Abstract][Full Text] [Related]
9. Photonic generation of a parabolic-shaped microwave signal and dual-linear-chirp microwave waveform. Kumar R; Raghuwanshi SK Appl Opt; 2020 Jul; 59(20):6024-6029. PubMed ID: 32672745 [TBL] [Abstract][Full Text] [Related]
10. Photonic millimeter-wave ultrawideband signal generation using frequency upconversion based on the stimulated Brillouin scattering effect. Du C; Zhou W; Wang Y; Wang M; Wang D; Wang K; Dong W; Zhang X Opt Lett; 2018 Oct; 43(20):4915-4918. PubMed ID: 30320782 [TBL] [Abstract][Full Text] [Related]
11. Photonic approach for the generation of switchable down-, up-, and dual-chirped linear frequency-modulated microwave signals. Li P; Yan L; Ye J; Zou X; Luo B; Pan W Opt Lett; 2020 Apr; 45(7):1990-1993. PubMed ID: 32236050 [TBL] [Abstract][Full Text] [Related]
12. Dual-linear chirp microwave signal generation by using single-beam injection to a DFB semiconductor laser and optical heterodyne technique. Jin Y; Lin X; Wu Z; Yue D; Zhang F; Zhang L; Jiang Z; Xia G Opt Express; 2022 Jun; 30(12):21698-21709. PubMed ID: 36224883 [TBL] [Abstract][Full Text] [Related]
13. Coherent stepped-frequency waveform generation based on recirculating microwave photonic frequency conversion. Ma C; Wang X; Yang Y; Ding Z; Pan S Opt Lett; 2023 Oct; 48(19):4985-4988. PubMed ID: 37773366 [TBL] [Abstract][Full Text] [Related]
14. Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz. Wang S; Zhang L; Lu Z; Zhang H; Qiao M; Idrees N; Saqlain M; Zheng S; Jin X; Zhang X; Yu X Opt Express; 2021 Jun; 29(13):19240-19246. PubMed ID: 34266037 [TBL] [Abstract][Full Text] [Related]
15. Novel RF-source-free reconfigurable microwave photonic radar. Zhang X; Zeng H; Yang J; Yin Z; Sun Q; Li W Opt Express; 2020 Apr; 28(9):13650-13661. PubMed ID: 32403835 [TBL] [Abstract][Full Text] [Related]
16. Anti-chromatic dispersion transmission of frequency and bandwidth-doubling dual-chirp microwave waveform. Zhang K; Zhao SH; Wen AJ; Zhang W; Zhai WL; Lin T; Li X Opt Lett; 2019 Aug; 44(16):4004-4007. PubMed ID: 31415533 [TBL] [Abstract][Full Text] [Related]
17. Photonic microwave downconverter based on an optoelectronic oscillator using a single dual-drive Mach-Zehnder modulator. Tang Z; Zhang F; Pan S Opt Express; 2014 Jan; 22(1):305-10. PubMed ID: 24514992 [TBL] [Abstract][Full Text] [Related]
18. Breaking the limitation of mode building time in an optoelectronic oscillator. Hao T; Cen Q; Dai Y; Tang J; Li W; Yao J; Zhu N; Li M Nat Commun; 2018 May; 9(1):1839. PubMed ID: 29743475 [TBL] [Abstract][Full Text] [Related]
19. Photonic-assisted multi-format dual-band microwave signal generator without background noise. Fan X; Jin Y; Cao X; Chen Y; Wang X; Li M; Zhu N; Li W Opt Express; 2023 May; 31(11):18346-18355. PubMed ID: 37381547 [TBL] [Abstract][Full Text] [Related]
20. Photonic generation of binary and quaternary phase-coded microwave signals by utilizing a dual-polarization dual-parallel Mach-Zehnder modulator. Li P; Yan L; Ye J; Pan Y; Pan W; Luo B; Zou X; Zhou T; Chen Z; Wang M Opt Express; 2018 Oct; 26(21):28013-28021. PubMed ID: 30469857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]