These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34807528)

  • 1. Behavioral control and changes in brain activity of honeybee during flapping.
    Ding H; Zhao J; Yan S
    Brain Behav; 2021 Dec; 11(12):e2426. PubMed ID: 34807528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Signatures of Changes in Honeybee's Central Complex During Wing Flapping.
    Ding H; Yan S
    J Insect Sci; 2022 Sep; 22(5):. PubMed ID: 36222481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of resilin in honeybee wings.
    Ma Y; Ning JG; Ren HL; Zhang PF; Zhao HY
    J Exp Biol; 2015 Jul; 218(Pt 13):2136-42. PubMed ID: 25987733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.
    Zhao H; Zheng N; Ribi WA; Zheng H; Xue L; Gong F; Zheng X; Hu F
    PLoS One; 2014; 9(11):e113012. PubMed ID: 25409523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.
    Van Truong T; Byun D; Lavine LC; Emlen DJ; Park HC; Kim MJ
    Bioinspir Biomim; 2012 Sep; 7(3):036021. PubMed ID: 22711210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The function of pitching in Beetle's flight revealed by insect-wearable backpack.
    Fu F; Li Y; Wang H; Li B; Sato H
    Biosens Bioelectron; 2022 Feb; 198():113818. PubMed ID: 34861525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation-based insect-inspired flight systems.
    Liu H
    Curr Opin Insect Sci; 2020 Dec; 42():105-109. PubMed ID: 33068784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel aerodynamics of insect flight: applications to micro-air vehicles.
    Ellington CP
    J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On flapping flight mechanisms and their applications to wind and marine energy harvesting.
    Thiria B
    Curr Opin Insect Sci; 2018 Dec; 30():39-45. PubMed ID: 30553483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural basis of forward flight control and landing in honeybees.
    Ibbotson MR; Hung YS; Meffin H; Boeddeker N; Srinivasan MV
    Sci Rep; 2017 Nov; 7(1):14591. PubMed ID: 29109404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization.
    Bayiz Y; Ghanaatpishe M; Fathy H; Cheng B
    Bioinspir Biomim; 2018 May; 13(4):046002. PubMed ID: 29557347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Good vibrations for flapping-wing flyers.
    Karásek M
    Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control.
    Bomphrey RJ; Godoy-Diana R
    Curr Opin Insect Sci; 2018 Dec; 30():26-32. PubMed ID: 30410869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.