These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34807570)
1. Ionic Signal Enhancement by the Space Charge Effect through the DNA Rolling Circle Amplification on the Outer Surface of Nanochannels. Wu X; Che C; Wang X; Du Q; Liang H; Gao P; Xia F Anal Chem; 2021 Dec; 93(48):16043-16050. PubMed ID: 34807570 [TBL] [Abstract][Full Text] [Related]
2. Exponential Increase in an Ionic Signal: A Dominant Role of the Space Charge Effect on the Outer Surface of Nanochannels. Wu X; Li Y; Xu H; Chen Y; Mao H; Ma Q; Du Q; Gao P; Xia F Anal Chem; 2021 Oct; 93(40):13711-13718. PubMed ID: 34581576 [TBL] [Abstract][Full Text] [Related]
3. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels. Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in rolling circle amplification-based biosensing strategies-A review. Xu L; Duan J; Chen J; Ding S; Cheng W Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384 [TBL] [Abstract][Full Text] [Related]
5. [Mass transport properties and applications of nanochannels]. Li Z; Wu Z; Xia X Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115 [TBL] [Abstract][Full Text] [Related]
6. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Xiang Y; Zhu X; Huang Q; Zheng J; Fu W Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527 [TBL] [Abstract][Full Text] [Related]
7. A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. Li SJ; Li J; Wang K; Wang C; Xu JJ; Chen HY; Xia XH; Huo Q ACS Nano; 2010 Nov; 4(11):6417-24. PubMed ID: 20958077 [TBL] [Abstract][Full Text] [Related]
8. Signal amplification by rolling circle amplification on universal flaps yielded from target-specific invasive reaction. Zou B; Ma Y; Wu H; Zhou G Analyst; 2012 Feb; 137(3):729-34. PubMed ID: 22158835 [TBL] [Abstract][Full Text] [Related]
9. Increasingly branched rolling circle amplification for the cancer gene detection. Li H; Xu J; Wang Z; Wu ZS; Jia L Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300 [TBL] [Abstract][Full Text] [Related]
10. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays. Minero GAS; Cangiano V; Garbarino F; Fock J; Hansen MF Mikrochim Acta; 2019 Jul; 186(8):528. PubMed ID: 31297615 [TBL] [Abstract][Full Text] [Related]
11. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Long Y; Zhou X; Xing D Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825 [TBL] [Abstract][Full Text] [Related]
12. Single-molecule DNA patterning and detection by padlock probing and rolling circle amplification in microchannels for analysis of small sample volumes. Tanaka Y; Xi H; Sato K; Mawatari K; Renberg B; Nilsson M; Kitamori T Anal Chem; 2011 May; 83(9):3352-7. PubMed ID: 21462922 [TBL] [Abstract][Full Text] [Related]
13. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification. Chen F; Xue J; Bai M; Fan C; Zhao Y Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502 [TBL] [Abstract][Full Text] [Related]
14. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Tian Q; Wang Y; Deng R; Lin L; Liu Y; Li J Nanoscale; 2015 Jan; 7(3):987-93. PubMed ID: 25470558 [TBL] [Abstract][Full Text] [Related]
15. Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification. Li X; Song J; Xue Q; Zhao H; Liu M; Chen B; Liu Y; Jiang W; Li CZ Analyst; 2017 Oct; 142(19):3598-3604. PubMed ID: 28891579 [TBL] [Abstract][Full Text] [Related]
16. Optomagnetic Detection of Rolling Circle Amplification Products. Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758 [TBL] [Abstract][Full Text] [Related]
17. Expanding possibilities of rolling circle amplification as a biosensing platform. Kobori T; Takahashi H Anal Sci; 2014; 30(1):59-64. PubMed ID: 24420245 [TBL] [Abstract][Full Text] [Related]
18. Rolling Circle Amplification-Based Polyvalent Molecular Beacon Probe-Assisted Signal Amplification Strategies for Sensitive Detection of B16 Cells. Zhang Z; Wang S; Ma J; Zhou T; Wang F; Wang X; Zhang G ACS Biomater Sci Eng; 2020 May; 6(5):3114-3121. PubMed ID: 33463255 [TBL] [Abstract][Full Text] [Related]
19. Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Wang Q; Yang C; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2014 May; 55():266-71. PubMed ID: 24393655 [TBL] [Abstract][Full Text] [Related]
20. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]