These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34807621)

  • 1. Rationalization of Nonlinear Adsorption Energy-Strain Relations and Brønsted-Evans-Polanyi and Transition State Scaling Relationships under Strain.
    Han J; Sun H; Shi T; Chen ZX
    J Phys Chem Lett; 2021 Dec; 12(47):11578-11584. PubMed ID: 34807621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain effect on adsorption and reactions of AHx (A = C, N, O, x ≤ 3) on In
    Lu H; Chen ZX
    J Chem Phys; 2022 Aug; 157(5):054705. PubMed ID: 35933197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study.
    Fan C; Zhu YA; Xu Y; Zhou Y; Zhou XG; Chen D
    J Chem Phys; 2012 Jul; 137(1):014703. PubMed ID: 22779676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted-Evans-Polanyi relationships.
    Mehmood F; Rankin RB; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Jun; 14(24):8644-52. PubMed ID: 22588638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implicit solvent effects in the determination of Brønsted-Evans-Polanyi relationships for heterogeneously catalyzed reactions.
    Gomes JRB; Viñes F; Illas F; Fajín JLC
    Phys Chem Chem Phys; 2019 Aug; 21(32):17687-17695. PubMed ID: 31364629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure and catalytic activity of exsolved Ni on Pd core-shell nanoparticles.
    Kumar P; Monder DS
    Phys Chem Chem Phys; 2022 Dec; 24(48):29801-29816. PubMed ID: 36468269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.
    Han ZK; Gao Y
    Chemistry; 2016 Feb; 22(6):2092-2099. PubMed ID: 26744026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear Activation Energy-Reaction Energy Relations for LaBO
    Zhang L; Su YQ; Chang MW; Filot IAW; Hensen EJM
    J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(51):31130-31141. PubMed ID: 32952767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides.
    Vojvodic A; Calle-Vallejo F; Guo W; Wang S; Toftelund A; Studt F; Martínez JI; Shen J; Man IC; Rossmeisl J; Bligaard T; Noørskov JK; Abild-Pedersen F
    J Chem Phys; 2011 Jun; 134(24):244509. PubMed ID: 21721645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.
    Michaelides A; Liu ZP; Zhang CJ; Alavi A; King DA; Hu P
    J Am Chem Soc; 2003 Apr; 125(13):3704-5. PubMed ID: 12656593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.
    Liu B; Greeley J
    Phys Chem Chem Phys; 2013 May; 15(17):6475-85. PubMed ID: 23529559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides.
    Vojvodic A; Hellman A; Ruberto C; Lundqvist BI
    Phys Rev Lett; 2009 Oct; 103(14):146103. PubMed ID: 19905584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of the Brønsted-Evans-Polanyi relationship for the hydrogen evolution reaction on transition metals based on constant electrode potential density functional theory.
    Cheng YL; Hsieh CT; Ho YS; Shen MH; Chao TH; Cheng MJ
    Phys Chem Chem Phys; 2022 Jan; 24(4):2476-2481. PubMed ID: 35022624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorbate diffusion on transition metal nanoparticles.
    Peng G; Mavrikakis M
    Nano Lett; 2015 Jan; 15(1):629-34. PubMed ID: 25422876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.