These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34807628)

  • 1. Molecular Simulations of Aqueous Electrolytes: Role of Explicit Inclusion of Charge Transfer into Force Fields.
    Berkowitz ML
    J Phys Chem B; 2021 Dec; 125(48):13069-13076. PubMed ID: 34807628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.
    Yao Y; Berkowitz ML; Kanai Y
    J Chem Phys; 2015 Dec; 143(24):241101. PubMed ID: 26723580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Charge Transfer in Water Diffusivity in Aqueous Ionic Solutions.
    Yao Y; Kanai Y; Berkowitz ML
    J Phys Chem Lett; 2014 Aug; 5(15):2711-6. PubMed ID: 26277968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing point depression of salt aqueous solutions using the Madrid-2019 model.
    Lamas CP; Vega C; Noya EG
    J Chem Phys; 2022 Apr; 156(13):134503. PubMed ID: 35395902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water.
    Blazquez S; Conde MM; Vega C
    J Chem Phys; 2023 Feb; 158(5):054505. PubMed ID: 36754806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F
    Blazquez S; Conde MM; Abascal JLF; Vega C
    J Chem Phys; 2022 Jan; 156(4):044505. PubMed ID: 35105066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge and electric field fluctuations in aqueous NaCl electrolytes.
    Sellner B; Valiev M; Kathmann SM
    J Phys Chem B; 2013 Sep; 117(37):10869-82. PubMed ID: 23906325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of Associated Electrolytes in Water: Molecular Dynamics Simulations of Sulfate Solutions.
    Duvail M; Villard A; Nguyen TN; Dufrêche JF
    J Phys Chem B; 2015 Aug; 119(34):11184-95. PubMed ID: 25965186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2015 Apr; 11(4):1756-64. PubMed ID: 26574385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Anomalous Diffusion of Water in Aqueous Electrolytes Using Machine Learned Potentials.
    Avula NVS; Klein ML; Balasubramanian S
    J Phys Chem Lett; 2023 Oct; 14(42):9500-9507. PubMed ID: 37851540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is an Inductive Effect Explicit Account Required for Atomic Charges Aimed at Use within the Force Fields?
    Shaimardanov AR; Shulga DA; Palyulin VA
    J Phys Chem A; 2022 Sep; 126(36):6278-6294. PubMed ID: 36054931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum in density of electrolyte solutions: Learning about ion-water interactions and testing the Madrid-2019 force field.
    Sedano LF; Blazquez S; Noya EG; Vega C; Troncoso J
    J Chem Phys; 2022 Apr; 156(15):154502. PubMed ID: 35459318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Decrement for Aqueous NaCl Solutions: Effect of Ionic Charge Scaling in Nonpolarizable Water Force Fields.
    Seal S; Doblhoff-Dier K; Meyer J
    J Phys Chem B; 2019 Nov; 123(46):9912-9921. PubMed ID: 31647235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].
    Choi E; McDaniel JG; Schmidt JR; Yethiraj A
    J Phys Chem Lett; 2014 Aug; 5(15):2670-4. PubMed ID: 26277961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Apr; 138(15):154102. PubMed ID: 23614407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of Electrical Conductivities of Aqueous Electrolyte Solutions: Two Surfaces, One Property.
    Blazquez S; Abascal JLF; Lagerweij J; Habibi P; Dey P; Vlugt TJH; Moultos OA; Vega C
    J Chem Theory Comput; 2023 Aug; 19(16):5380-5393. PubMed ID: 37506381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.
    Kan Z; Yan X; Ma J
    J Phys Chem A; 2015 Mar; 119(9):1573-89. PubMed ID: 25506668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.