BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34807726)

  • 1. Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile.
    Bishop CE; Shadid TM; Lavey NP; Kempher ML; Ballard JD; Duerfeldt AS
    J Bacteriol; 2022 Feb; 204(2):e0041121. PubMed ID: 34807726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network of small RNAs regulates sporulation initiation in Clostridioides difficile.
    Fuchs M; Lamm-Schmidt V; LenĨe T; Sulzer J; Bublitz A; Wackenreuter J; Gerovac M; Strowig T; Faber F
    EMBO J; 2023 Jun; 42(12):e112858. PubMed ID: 37140366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved switch controls virulence, sporulation, and motility in C. difficile.
    DiCandia MA; Edwards AN; Alcaraz YB; Monteiro MP; Lee CD; Vargas Cuebas G; Bagchi P; McBride SM
    PLoS Pathog; 2024 May; 20(5):e1012224. PubMed ID: 38739653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pleiotropic roles of Clostridium difficile sin locus.
    Girinathan BP; Ou J; Dupuy B; Govind R
    PLoS Pathog; 2018 Mar; 14(3):e1006940. PubMed ID: 29529083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-variable expression of pdcB, a phosphodiesterase, influences sporulation in Clostridioides difficile.
    Dhungel BA; Govind R
    Mol Microbiol; 2021 Nov; 116(5):1347-1360. PubMed ID: 34606654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027.
    Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL
    PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three Orphan Histidine Kinases Inhibit Clostridioides difficile Sporulation.
    Edwards AN; Wetzel D; DiCandia MA; McBride SM
    J Bacteriol; 2022 May; 204(5):e0010622. PubMed ID: 35416689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile.
    Martins D; DiCandia MA; Mendes AL; Wetzel D; McBride SM; Henriques AO; Serrano M
    Sci Rep; 2021 Apr; 11(1):7887. PubMed ID: 33846410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium difficile ClpP Homologues are Capable of Uncoupled Activity and Exhibit Different Levels of Susceptibility to Acyldepsipeptide Modulation.
    Lavey NP; Shadid T; Ballard JD; Duerfeldt AS
    ACS Infect Dis; 2019 Jan; 5(1):79-89. PubMed ID: 30411608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Clostridium difficile spo0A gene is a persistence and transmission factor.
    Deakin LJ; Clare S; Fagan RP; Dawson LF; Pickard DJ; West MR; Wren BW; Fairweather NF; Dougan G; Lawley TD
    Infect Immun; 2012 Aug; 80(8):2704-11. PubMed ID: 22615253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
    Edwards AN; Nawrocki KL; McBride SM
    Infect Immun; 2014 Oct; 82(10):4276-91. PubMed ID: 25069979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Novel Regulator of Clostridioides difficile Cortex Formation.
    Touchette MH; Benito de la Puebla H; Alves Feliciano C; Tanenbaum B; Schenone M; Carr SA; Shen A
    mSphere; 2021 Jun; 6(3):e0021121. PubMed ID: 34047655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis.
    Fedhila S; Msadek T; Nel P; Lereclus D
    J Bacteriol; 2002 Oct; 184(20):5554-62. PubMed ID: 12270812
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Coullon H; Rifflet A; Wheeler R; Janoir C; Boneca IG; Candela T
    J Biol Chem; 2018 Nov; 293(47):18040-18054. PubMed ID: 30266804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Revised Understanding of Clostridioides difficile Spore Germination.
    Lawler AJ; Lambert PA; Worthington T
    Trends Microbiol; 2020 Sep; 28(9):744-752. PubMed ID: 32781028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.
    Lawley TD; Croucher NJ; Yu L; Clare S; Sebaihia M; Goulding D; Pickard DJ; Parkhill J; Choudhary J; Dougan G
    J Bacteriol; 2009 Sep; 191(17):5377-86. PubMed ID: 19542279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.