These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34807931)

  • 21. Enzymatic synthesis of labeled DNA by PCR using new fluorescent thymidine nucleotide analogue and superthermophilic KOD dash DNA polymerase.
    Obayashi T; Masud MM; Ozaki AN; Ozaki H; Kuwahara M; Sawai H
    Bioorg Med Chem Lett; 2002 Apr; 12(8):1167-70. PubMed ID: 11934580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides.
    Korlach J; Bibillo A; Wegener J; Peluso P; Pham TT; Park I; Clark S; Otto GA; Turner SW
    Nucleosides Nucleotides Nucleic Acids; 2008 Sep; 27(9):1072-83. PubMed ID: 18711669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple and novel DNA combing methodology for Fiber-FISH and optical mapping.
    Yadav H; Sharma P
    Genomics; 2019 Jul; 111(4):567-578. PubMed ID: 29550497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple DNA stretching method for fluorescence imaging of single DNA molecules.
    Chan TF; Ha C; Phong A; Cai D; Wan E; Leung L; Kwok PY; Xiao M
    Nucleic Acids Res; 2006; 34(17):e113. PubMed ID: 16971459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular combing.
    Conti C; Caburet S; Schurra C; Bensimon A
    Curr Protoc Cytom; 2001 May; Chapter 8():Unit 8.10. PubMed ID: 18770738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA.
    Le BH; Koo JC; Joo HN; Seo YJ
    Bioorg Med Chem; 2017 Jul; 25(14):3591-3596. PubMed ID: 28501432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Next-generation sequencing platforms.
    Mardis ER
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():287-303. PubMed ID: 23560931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress towards single-molecule sequencing: enzymatic synthesis of nucleotide-specifically labeled DNA.
    Augustin MA; Ankenbauer W; Angerer B
    J Biotechnol; 2001 Apr; 86(3):289-301. PubMed ID: 11257538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Accurate Sequence- and Position-Independent Error Profiling of DNA Synthesis and Sequencing.
    Yeom H; Kim N; Lee AC; Kim J; Kim H; Choi H; Song SW; Kwon S; Choi Y
    ACS Synth Biol; 2023 Dec; 12(12):3567-3577. PubMed ID: 37961855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes.
    Das SK; Austin MD; Akana MC; Deshpande P; Cao H; Xiao M
    Nucleic Acids Res; 2010 Oct; 38(18):e177. PubMed ID: 20699272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concentrating and labeling genomic DNA in a nanofluidic array.
    Marie R; Pedersen JN; Mir KU; Bilenberg B; Kristensen A
    Nanoscale; 2018 Jan; 10(3):1376-1382. PubMed ID: 29300409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A photocleavable fluorescent nucleotide for DNA sequencing and analysis.
    Li Z; Bai X; Ruparel H; Kim S; Turro NJ; Ju J
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):414-9. PubMed ID: 12515853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid DNA mapping by fluorescent single molecule detection.
    Xiao M; Phong A; Ha C; Chan TF; Cai D; Leung L; Wan E; Kistler AL; DeRisi JL; Selvin PR; Kwok PY
    Nucleic Acids Res; 2007; 35(3):e16. PubMed ID: 17175538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isothermal amplification of DNA using quadruplex primers with fluorescent pteridine base analogue 3-methyl isoxanthopterin.
    Gogichaishvili S; Johnson J; Gvarjaladze D; Lomidze L; Kankia B
    Biopolymers; 2014 Jun; 101(6):583-90. PubMed ID: 24122726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scoring single-nucleotide polymorphisms at the single-molecule level by counting individual DNA cleavage events on surfaces.
    Nie B; Shortreed MR; Smith LM
    Anal Chem; 2005 Oct; 77(20):6594-600. PubMed ID: 16223245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanded genetic codes in next generation sequencing enable decontamination and mitochondrial enrichment.
    McKernan KJ; Spangler J; Zhang L; Tadigotla V; McLaughlin S; Warner J; Zare A; Boles RG
    PLoS One; 2014; 9(5):e96492. PubMed ID: 24788618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput single-molecule imaging system using nanofabricated trenches and fluorescent DNA-binding proteins.
    Kang Y; Cheon NY; Cha J; Kim A; Kim HI; Lee L; Kim KO; Jo K; Lee JY
    Biotechnol Bioeng; 2020 Jun; 117(6):1640-1648. PubMed ID: 32162675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent high-density labeling of DNA: error-free substitution for a normal nucleotide.
    Földes-Papp Z; Angerer B; Ankenbauer W; Rigler R
    J Biotechnol; 2001 Apr; 86(3):237-53. PubMed ID: 11257534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an Artificially Intelligent Nanopore for High-Throughput DNA Sequencing with a Machine-Learning-Aided Quantum-Tunneling Approach.
    Jena MK; Pathak B
    Nano Lett; 2023 Apr; 23(7):2511-2521. PubMed ID: 36799480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enrichment of megabase-sized DNA molecules for single-molecule optical mapping and next-generation sequencing.
    Łopacińska-Jørgensen JM; Pedersen JN; Bak M; Mehrjouy MM; Sørensen KT; Østergaard PF; Bilenberg B; Kristensen A; Taboryski RJ; Flyvbjerg H; Marie R; Tommerup N; Silahtaroglu A
    Sci Rep; 2017 Dec; 7(1):17893. PubMed ID: 29263336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.