BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34808021)

  • 21. R723, a selective JAK2 inhibitor, effectively treats JAK2V617F-induced murine myeloproliferative neoplasm.
    Shide K; Kameda T; Markovtsov V; Shimoda HK; Tonkin E; Fang S; Liu C; Gelman M; Lang W; Romero J; McLaughlin J; Bhamidipati S; Clough J; Low C; Reitsma A; Siu S; Pine P; Park G; Torneros A; Duan M; Singh R; Payan DG; Matsunaga T; Hitoshi Y; Shimoda K
    Blood; 2011 Jun; 117(25):6866-75. PubMed ID: 21531978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease.
    Evrot E; Ebel N; Romanet V; Roelli C; Andraos R; Qian Z; Dölemeyer A; Dammassa E; Sterker D; Cozens R; Hofmann F; Murakami M; Baffert F; Radimerski T
    Clin Cancer Res; 2013 Nov; 19(22):6230-41. PubMed ID: 24081976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Progress of study on JAK2V617F mutation in myeloproliferative neoplasm].
    Chen YX; Li Y; Zhang LY; Liu B
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Oct; 19(5):1329-33. PubMed ID: 22040998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms.
    Pandey G; Mazzacurati L; Rowsell TM; Horvat NP; Amin NE; Zhang G; Akuffo AA; Colin-Leitzinger CM; Haura EB; Kuykendall AT; Zhang L; Epling-Burnette PK; Reuther GW
    Am J Hematol; 2024 Jun; 99(6):1040-1055. PubMed ID: 38440831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.
    Pardanani A; Hood J; Lasho T; Levine RL; Martin MB; Noronha G; Finke C; Mak CC; Mesa R; Zhu H; Soll R; Gilliland DG; Tefferi A
    Leukemia; 2007 Aug; 21(8):1658-68. PubMed ID: 17541402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic and functional impact of Trp53 inactivation in JAK2V617F myeloproliferative neoplasms.
    Gou P; Liu D; Ganesan S; Lauret E; Maslah N; Parietti V; Zhang W; Meignin V; Kiladjian JJ; Cassinat B; Giraudier S
    Blood Cancer J; 2024 Jan; 14(1):1. PubMed ID: 38177095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors.
    Choong ML; Pecquet C; Pendharkar V; Diaconu CC; Yong JW; Tai SJ; Wang SF; Defour JP; Sangthongpitag K; Villeval JL; Vainchenker W; Constantinescu SN; Lee MA
    J Cell Mol Med; 2013 Nov; 17(11):1397-409. PubMed ID: 24251790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation.
    Manshouri T; Quintás-Cardama A; Nussenzveig RH; Gaikwad A; Estrov Z; Prchal J; Cortes JE; Kantarjian HM; Verstovsek S
    Cancer Sci; 2008 Jun; 99(6):1265-73. PubMed ID: 18482053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms.
    Stivala S; Codilupi T; Brkic S; Baerenwaldt A; Ghosh N; Hao-Shen H; Dirnhofer S; Dettmer MS; Simillion C; Kaufmann BA; Chiu S; Keller M; Kleppe M; Hilpert M; Buser AS; Passweg JR; Radimerski T; Skoda RC; Levine RL; Meyer SC
    J Clin Invest; 2019 Mar; 129(4):1596-1611. PubMed ID: 30730307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: a new therapeutic target?
    Ramos TL; Sánchez-Abarca LI; Redondo A; Hernández-Hernández Á; Almeida AM; Puig N; Rodríguez C; Ortega R; Preciado S; Rico A; Muntión S; Porras JRG; Del Cañizo C; Sánchez-Guijo F
    Oncotarget; 2017 Apr; 8(17):28187-28202. PubMed ID: 28390197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jmjd1c is dispensable for healthy adult hematopoiesis and Jak2V617F-driven myeloproliferative disease initiation in mice.
    Staehle HF; Heinemann J; Gruender A; Omlor AM; Pahl HL; Jutzi JS
    PLoS One; 2020; 15(2):e0228362. PubMed ID: 32017785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jak2V617F Reversible Activation Shows Its Essential Requirement in Myeloproliferative Neoplasms.
    Dunbar AJ; Bowman RL; Park YC; O'Connor K; Izzo F; Myers RM; Karzai A; Zaroogian Z; Kim WJ; Fernández-Maestre I; Waarts MR; Nazir A; Xiao W; Codilupi T; Brodsky M; Farina M; Cai L; Cai SF; Wang B; An W; Yang JL; Mowla S; Eisman SE; Hanasoge Somasundara AV; Glass JL; Mishra T; Houston R; Guzzardi E; Martinez Benitez AR; Viny AD; Koche RP; Meyer SC; Landau DA; Levine RL
    Cancer Discov; 2024 May; 14(5):737-751. PubMed ID: 38230747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells.
    Mansier O; Kilani B; Guitart AV; Guy A; Gourdou-Latyszenok V; Marty C; Parrens M; Plo I; Vainchenker W; James C
    Blood; 2019 Dec; 134(26):2383-2387. PubMed ID: 31697834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered distribution and function of NK-cell subsets lead to impaired tumor surveillance in JAK2V617F myeloproliferative neoplasms.
    Fernandes de Oliveira Costa A; Olops Marani L; Mantello Bianco T; Queiroz Arantes A; Aparecida Lopes I; Antonio Pereira-Martins D; Carvalho Palma L; Santos Scheucher P; Lilian Dos Santos Schiavinato J; Sarri Binelli L; Araújo Silva C; Kobayashi SS; Agostinho Machado-Neto J; Magalhães Rego E; Samuel Welner R; Lobo de Figueiredo-Pontes L
    Front Immunol; 2022; 13():768592. PubMed ID: 36211444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm.
    Rahman MF; Yang Y; Le BT; Dutta A; Posyniak J; Faughnan P; Sayem MA; Aguilera NS; Mohi G
    Nat Commun; 2022 Sep; 13(1):5347. PubMed ID: 36100596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AKT is a therapeutic target in myeloproliferative neoplasms.
    Khan I; Huang Z; Wen Q; Stankiewicz MJ; Gilles L; Goldenson B; Schultz R; Diebold L; Gurbuxani S; Finke CM; Lasho TL; Koppikar P; Pardanani A; Stein B; Altman JK; Levine RL; Tefferi A; Crispino JD
    Leukemia; 2013 Sep; 27(9):1882-90. PubMed ID: 23748344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms?
    Chen E; Mullally A
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):268-76. PubMed ID: 25696866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. JAK2V617F drives Mcl-1 expression and sensitizes hematologic cell lines to dual inhibition of JAK2 and Bcl-xL.
    Guo J; Roberts L; Chen Z; Merta PJ; Glaser KB; Shah OJ
    PLoS One; 2015; 10(3):e0114363. PubMed ID: 25781882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN.
    Mazzacurati L; Collins RJ; Pandey G; Lambert-Showers QT; Amin NE; Zhang L; Stubbs MC; Epling-Burnette PK; Koblish HK; Reuther GW
    Blood Adv; 2019 Nov; 3(22):3503-3514. PubMed ID: 31725895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.