BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34808226)

  • 1. Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation.
    Agarwal A; Mukhopadhyay S
    J Mol Biol; 2022 Jan; 434(1):167368. PubMed ID: 34808226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prion-Like Proteins in Phase Separation and Their Link to Disease.
    Sprunger ML; Jackrel ME
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain.
    Kamps J; Lin YH; Oliva R; Bader V; Winter R; Winklhofer KF; Tatzelt J
    J Biol Chem; 2021 Jul; 297(1):100860. PubMed ID: 34102212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of misfolding of the human prion protein revealed by a pathological mutation.
    Sanz-Hernández M; Barritt JD; Sobek J; Hornemann S; Aguzzi A; De Simone A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33731477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease.
    do Amaral MJ; Cordeiro Y
    Prog Mol Biol Transl Sci; 2021; 183():1-43. PubMed ID: 34656326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases.
    Sarnataro D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30304819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arg177 and Asp159 from dog prion protein slow liquid-liquid phase separation and inhibit amyloid formation of human prion protein.
    Li XN; Gao Y; Li Y; Yin JX; Yi CW; Yuan HY; Huang JJ; Wang LQ; Chen J; Liang Y
    J Biol Chem; 2023 Nov; 299(11):105329. PubMed ID: 37805139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer.
    Matos CO; Passos YM; do Amaral MJ; Macedo B; Tempone MH; Bezerra OCL; Moraes MO; Almeida MS; Weber G; Missailidis S; Silva JL; Uversky VN; Pinheiro AS; Cordeiro Y
    FASEB J; 2020 Jan; 34(1):365-385. PubMed ID: 31914616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases.
    de Oliveira GAP; Cordeiro Y; Silva JL; Vieira TCRG
    Adv Protein Chem Struct Biol; 2019; 118():289-331. PubMed ID: 31928729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion.
    Agarwal A; Arora L; Rai SK; Avni A; Mukhopadhyay S
    Nat Commun; 2022 Mar; 13(1):1154. PubMed ID: 35241680
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Eraña H; Fernández-Borges N; Elezgarai SR; Harrathi C; Charco JM; Chianini F; Dagleish MP; Ortega G; Millet Ó; Castilla J
    J Virol; 2017 Dec; 91(24):. PubMed ID: 28978705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid-liquid phase separation.
    Agarwal A; Rai SK; Avni A; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34737230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases.
    Jaunmuktane Z; Brandner S
    Neuropathol Appl Neurobiol; 2020 Oct; 46(6):522-545. PubMed ID: 31868945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy migration captures membrane-induced oligomerization of the prion protein.
    Agarwal A; Das D; Banerjee T; Mukhopadhyay S
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140324. PubMed ID: 31740413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion-Like Characteristics of Polyglutamine-Containing Proteins.
    Pearce MMP; Kopito RR
    Cold Spring Harb Perspect Med; 2018 Feb; 8(2):. PubMed ID: 28096245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein misfolding and amyloid nucleation through liquid-liquid phase separation.
    Mukherjee S; Poudyal M; Dave K; Kadu P; Maji SK
    Chem Soc Rev; 2024 May; 53(10):4976-5013. PubMed ID: 38597222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.