These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34808611)

  • 1. Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation.
    Khan R; Ng KT
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34808611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue.
    Ng KT; Yan R
    Med Biol Eng Comput; 2003 Nov; 41(6):618-24. PubMed ID: 14686586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology.
    Corrado C; Lassoued J; Mahjoub M; Zemzemi N
    Math Biosci; 2016 Feb; 272():81-91. PubMed ID: 26723278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient approximation of cardiac mechanics through reduced-order modeling with deep learning-based operator approximation.
    Cicci L; Fresca S; Manzoni A; Quarteroni A
    Int J Numer Method Biomed Eng; 2024 Jan; 40(1):e3783. PubMed ID: 37921217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.
    Pagani S; Manzoni A
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3450. PubMed ID: 33599106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating inductances in tissue-scale models of cardiac electrophysiology.
    Rossi S; Griffith BE
    Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations.
    Pfaller MR; Cruz Varona M; Lang J; Bertoglio C; Wall WA
    Int J Numer Method Biomed Eng; 2020 Apr; 36(4):e3320. PubMed ID: 32022424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium.
    Fresca S; Manzoni A; Dedè L; Quarteroni A
    Front Physiol; 2021; 12():679076. PubMed ID: 34630131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations.
    Pulimeno A; Coates-Farley G; Veresko M; Jiang L; Cheng MC; Liu Y; Hou D
    MethodsX; 2023; 10():102204. PubMed ID: 37424764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model.
    Belhamadia Y; Rammal Z
    Comput Biol Med; 2021 Mar; 130():104187. PubMed ID: 33454534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study of different projection-based model reduction techniques applied to computational homogenisation.
    Soldner D; Brands B; Zabihyan R; Steinmann P; Mergheim J
    Comput Mech; 2017; 60(4):613-625. PubMed ID: 31258232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional Chebyshev pseudospectral modelling of cardiac propagation.
    Zhan Z; Ng KT
    Med Biol Eng Comput; 2000 May; 38(3):311-8. PubMed ID: 10912348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proper Orthogonal Decomposition-Based Method for Predicting Flow and Heat Transfer of Oil and Water in Reservoir.
    Sun X; Li B; Ma X; Pan Y; Yang S; Huang W
    J Energy Resour Technol; 2020 Jan; 142(1):0124011-1240110. PubMed ID: 32431468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient simulation of cardiac electrical propagation using high order finite elements.
    Arthurs CJ; Bishop MJ; Kay D
    J Comput Phys; 2012 May; 231(10):3946-3962. PubMed ID: 24976644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):15-25. PubMed ID: 9444836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-Based and Meshfree Reduced Order Phase-Field Models for Brittle Fracture: One Dimensional Problems.
    Nguyen NH; Nguyen VP; Wu JY; Le TH; Ding Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31181756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.