These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34808806)

  • 1. Development of electrical substitution Fourier transform spectrometry for absolute optical power measurements.
    Neira JE; Woods SI; Proctor JE; Rice JP
    Opt Express; 2021 Nov; 29(23):37314-37326. PubMed ID: 34808806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements.
    Woods SI; Neira JE; Proctor JE; Rice JP; Tomlin NA; White MG; Stephens MS; Lehman JH
    Metrologia; 2022; 59(4):. PubMed ID: 36733421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Near-Infrared Spectral Responsivity Scale.
    Shaw PS; Larason TC; Gupta R; Brown SW; Lykke KR
    J Res Natl Inst Stand Technol; 2000; 105(5):689-700. PubMed ID: 27551631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared spectral responsivity scale realization and validations.
    Eppeldauer GP; Podobedov VB
    Appl Opt; 2012 Sep; 51(25):6003-8. PubMed ID: 22945145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step-scan Michelson Fourier-transform spectrometer for optical emission spectroscopy in UV-VIS spectral range.
    Ďurian M; Sámel M; Matejčík Š
    Rev Sci Instrum; 2020 Mar; 91(3):033102. PubMed ID: 32259943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature laser power standard using a microfabricated, electrical substitution bolometer.
    Stephens M; Yung CS; Tomlin NA; Vaskuri A; Ryger I; Spidell M; White MG; Jenkins T; Landry J; Sereke T; Lehman JH
    Rev Sci Instrum; 2021 Feb; 92(2):025107. PubMed ID: 33648050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations.
    Lehman JH; Vayshenker I; Livigni DJ; Hadler J
    J Res Natl Inst Stand Technol; 2004; 109(2):291-8. PubMed ID: 27366611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband infrared trap detector based upon doped silicon photocurrent devices.
    Woods SI; Proctor JE; Jung TM; Carter AC; Neira J; Defibaugh DR
    Appl Opt; 2018 Jun; 57(18):D82-D89. PubMed ID: 30117943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared.
    Theocharous E; Deshpande R; Dillon AC; Lehman J
    Appl Opt; 2006 Feb; 45(6):1093-7. PubMed ID: 16523768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
    Li J; Lu DF; Qi ZM
    Appl Spectrosc; 2015 Sep; 69(9):1112-7. PubMed ID: 26414526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standing wave spectrometer.
    Jovanov V; Ivanchev J; Knipp D
    Opt Express; 2010 Jan; 18(2):426-38. PubMed ID: 20173862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
    Theocharous E; Engtrakul C; Dillon AC; Lehman J
    Appl Opt; 2008 Aug; 47(22):3999-4003. PubMed ID: 18670553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements.
    Datla RU; Stock K; Parr AC; Hoyt CC; Miller PJ; Foukal PV
    Appl Opt; 1992 Dec; 31(34):7219-25. PubMed ID: 20802586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design optimization and implementation of a Fourier transform spectrometer with rotating motion for 0.1 cm
    Kim J; Lee S; Lee W; Lee J
    Opt Express; 2023 Sep; 31(20):33041-33055. PubMed ID: 37859092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer.
    Arenas DJ; Shim D; Koukis DI; Seok E; Tanner DB; O KK
    Rev Sci Instrum; 2011 Oct; 82(10):103106. PubMed ID: 22047279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a cryogenic far-infrared diffraction grating spectrometer used to post-disperse the output from a Fourier transform spectrometer.
    Anderson AM; Naylor DA; Gom BG; Buchan MA; Christiansen AJ; Veenendaal IT
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38284811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform spectrometer based on high-repetition-rate mid-infrared supercontinuum sources for trace gas detection.
    Abbas MA; Jahromi KE; Nematollahi M; Krebbers R; Liu N; Woyessa G; Bang O; Huot L; Harren FJM; Khodabakhsh A
    Opt Express; 2021 Jul; 29(14):22315-22330. PubMed ID: 34265999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer.
    Zong Y; Datla RU
    J Res Natl Inst Stand Technol; 1998; 103(6):605-614. PubMed ID: 28009364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges.
    Rabus H; Persch V; Ulm G
    Appl Opt; 1997 Aug; 36(22):5421-40. PubMed ID: 18259363
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.