BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34808821)

  • 1. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing electromagnetic field gradient in tip-enhanced Raman spectroscopy with a perfect radially polarized beam.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2022 Jun; 30(12):21377-21385. PubMed ID: 36224858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy.
    Umakoshi T; Saito Y; Verma P
    Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical nanofocusing of magnetic dipole moment using a closed plasmonic tip.
    Kim SJ; Yoo S; Lee K; Kim J; Lee Y; Lee B
    Opt Express; 2017 Jun; 25(13):14077-14088. PubMed ID: 28788993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallic nanosphere-assisted coupling ultrafast surface plasmon polaritons background-free tip nanofocusing.
    Meng C; Li W; Xie Z; Zhang L; Xu L; Gao F; Zhang W; Mei T; Zhao J
    Opt Lett; 2021 Nov; 46(22):5554-5557. PubMed ID: 34780404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.
    Kumar S; Johnson TW; Wood CK; Qu T; Wittenberg NJ; Otto LM; Shaver J; Long NJ; Victora RH; Edel JB; Oh SH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9319-26. PubMed ID: 26837912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed nanoscale optical trapping with plasmonic double nanohole aperture.
    Anyika T; Hong C; Ndukaife JC
    Nanoscale; 2023 Jun; 15(22):9710-9717. PubMed ID: 37132641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic field hugely enhanced by coupling to optical energy focusing structure.
    Li W; Hou Y
    Opt Express; 2017 Apr; 25(7):7358-7368. PubMed ID: 28380859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced nonlinear nanofocusing of gold nanoprisms driven via an ultrafast azimuthal vector beam.
    Zhang W; Zhang L; Lu F; Bai D; Xue T; Meng C; Liu M; Mao D; Gao F; Mei T
    Nanoscale; 2020 Apr; 12(13):7045-7050. PubMed ID: 32154544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing.
    Zhang M; Wang T
    Nanoscale Res Lett; 2016 Dec; 11(1):421. PubMed ID: 27654281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.