These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34808878)

  • 1. Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes.
    Tučková T; Šiler M; Boonzajer Flaes DE; Jákl P; Turtaev S; Krátký S; Heintzmann R; Uhlířová H; Čižmár T
    Opt Express; 2021 Nov; 29(23):38206-38220. PubMed ID: 34808878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal 3D reflectance imaging through multimode fiber without wavefront shaping.
    Lee SY; Parot VJ; Bouma BE; Villiger M
    Optica; 2022 Jan; 9(1):112-120. PubMed ID: 35419464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High contrast multimode fiber imaging based on wavelength modulation.
    Zhang X; Wen Z; Ma Y; Liu X; Wang L; Yang Q
    Appl Opt; 2020 Aug; 59(22):6677-6681. PubMed ID: 32749371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging.
    Turtaev S; Leite IT; Altwegg-Boussac T; Pakan JMP; Rochefort NL; Čižmár T
    Light Sci Appl; 2018; 7():92. PubMed ID: 30479758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near perfect focusing through multimode fibres.
    Gomes AD; Turtaev S; Du Y; Čižmár T
    Opt Express; 2022 Mar; 30(7):10645-10663. PubMed ID: 35473026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focus quality in raster-scan imaging via a multimode fiber.
    Lyu Z; Osnabrugge G; Pinkse PWH; Amitonova LV
    Appl Opt; 2022 May; 61(15):4363-4369. PubMed ID: 36256273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13-fold resolution gain through turbid layer via translated unknown speckle illumination.
    Guo K; Zhang Z; Jiang S; Liao J; Zhong J; Eldar YC; Zheng G
    Biomed Opt Express; 2018 Jan; 9(1):260-275. PubMed ID: 29359102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics.
    Stibůrek M; Ondráčková P; Tučková T; Turtaev S; Šiler M; Pikálek T; Jákl P; Gomes A; Krejčí J; Kolbábková P; Uhlířová H; Čižmár T
    Nat Commun; 2023 Apr; 14(1):1897. PubMed ID: 37019883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode fibre: Light-sheet microscopy at the tip of a needle.
    Plöschner M; Kollárová V; Dostál Z; Nylk J; Barton-Owen T; Ferrier DE; Chmelík R; Dholakia K; Čižmár T
    Sci Rep; 2015 Dec; 5():18050. PubMed ID: 26657400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber.
    Vasquez-Lopez SA; Turcotte R; Koren V; Plöschner M; Padamsey Z; Booth MJ; Čižmár T; Emptage NJ
    Light Sci Appl; 2018; 7():110. PubMed ID: 30588295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-diffraction computational imaging via a flexible multicore-multimode fiber.
    Lyu Z; Abrashitova K; de Boer JF; Andresen ER; Rigneault H; Amitonova LV
    Opt Express; 2023 Mar; 31(7):11249-11260. PubMed ID: 37155765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speckle-correlation imaging through a kaleidoscopic multimode fiber.
    Bouchet D; Caravaca-Aguirre AM; Godefroy G; Moreau P; Wang I; Bossy E
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2221407120. PubMed ID: 37343065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging.
    Chen HH; Singh VR; Luo Y
    Opt Express; 2015 Mar; 23(6):7075-84. PubMed ID: 25837052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking analysis of computer generated holograms for complex wavefront shaping using pixelated phase modulators.
    Rothe S; Daferner P; Heide S; Krause D; Schmieder F; Koukourakis N; Czarske JW
    Opt Express; 2021 Nov; 29(23):37602-37616. PubMed ID: 34808829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors.
    Chang J; Wetzstein G
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 29219256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibre-optic two-photon scanning fluorescence microscopy.
    Bird D; Gu M
    J Microsc; 2002 Oct; 208(Pt 1):35-48. PubMed ID: 12366596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy.
    Uhlířová H; Stibůrek M; Pikálek T; Gomes A; Turtaev S; Kolbábková P; Čižmár T
    Neurophotonics; 2024 Sep; 11(Suppl 1):S11504. PubMed ID: 38250297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.