These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34808920)

  • 1. Universal dwell time optimization for deterministic optics fabrication.
    Wang T; Huang L; Vescovi M; Kuhne D; Zhu Y; Negi VS; Zhang Z; Wang C; Ke X; Choi H; Pullen WC; Kim D; Kemao Q; Nakhoda K; Bouet N; Idir M
    Opt Express; 2021 Nov; 29(23):38737-38757. PubMed ID: 34808920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RIFTA: A Robust Iterative Fourier Transform-based dwell time Algorithm for ultra-precision ion beam figuring of synchrotron mirrors.
    Wang T; Huang L; Kang H; Choi H; Kim DW; Tayabaly K; Idir M
    Sci Rep; 2020 May; 10(1):8135. PubMed ID: 32424222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-tool optimization for computer controlled optical surfacing.
    Ke X; Wang T; Zhang Z; Huang L; Wang C; Negi VS; Pullen WC; Choi H; Kim D; Idir M
    Opt Express; 2022 May; 30(10):16957-16972. PubMed ID: 36221529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RISE: robust iterative surface extension for sub-nanometer X-ray mirror fabrication.
    Wang T; Huang L; Choi H; Vescovi M; Kuhne D; Zhu Y; Pullen WC; Ke X; Kim DW; Kemao Q; Tayabaly K; Bouet N; Idir M
    Opt Express; 2021 May; 29(10):15114-15132. PubMed ID: 33985218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a position-velocity-time-modulated two-dimensional ion beam figuring system for synchrotron x-ray mirror fabrication.
    Wang T; Huang L; Zhu Y; Vescovi M; Khune D; Kang H; Choi H; Kim DW; Tayabaly K; Bouet N; Idir M
    Appl Opt; 2020 Apr; 59(11):3306-3314. PubMed ID: 32400440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic algorithm-powered non-sequential dwell time optimization for large optics fabrication.
    Kang H; Wang T; Choi H; Kim D
    Opt Express; 2022 May; 30(10):16442-16458. PubMed ID: 36221487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on an effective one-dimensional ion-beam figuring method.
    Wang T; Huang L; Vescovi M; Kuhne D; Tayabaly K; Bouet N; Idir M
    Opt Express; 2019 May; 27(11):15368-15381. PubMed ID: 31163734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision fabrication of aluminum optics by optimizing an Ar
    Du C; Dai Y; Guan C; Hu H
    Opt Express; 2021 Aug; 29(18):28886-28900. PubMed ID: 34615009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.
    Dai Y; Liao W; Zhou L; Chen S; Xie X
    Appl Opt; 2010 Dec; 49(34):6630-6. PubMed ID: 21124541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 2: application.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Jul; 53(19):4275-81. PubMed ID: 25089991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified dwell time optimization model and its applications in subaperture polishing.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zernike mapping of optimum dwell time in deterministic fabrication of freeform optics.
    Zhu W; Beaucamp A
    Opt Express; 2019 Sep; 27(20):28692-28706. PubMed ID: 31684616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dwell-time algorithm for polishing large optics.
    Wang C; Yang W; Wang Z; Yang X; Hu C; Zhong B; Guo Y; Xu Q
    Appl Opt; 2014 Jul; 53(21):4752-60. PubMed ID: 25090214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 1: Mathematical modeling.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Jul; 53(19):4266-74. PubMed ID: 25089990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid fabrication strategy for Ø1.5  m off-axis parabolic parts using computer-controlled optical surfacing.
    Hu H; Qi E; Luo X; Zhang X; Xue D
    Appl Opt; 2018 Dec; 57(34):F37-F43. PubMed ID: 30645273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-tool multiplexing model of parallel computer controlled optical surfacing.
    Ke X; Wang T; Choi H; Pullen W; Huang L; Idir M; Kim DW
    Opt Lett; 2020 Dec; 45(23):6426-6429. PubMed ID: 33258828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Elementary Approximation of Dwell Time Algorithm for Ultra-Precision Computer-Controlled Optical Surfacing.
    Wang Y; Zhang Y; Kang R; Ji F
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithm for ion beam figuring of low-gradient mirrors.
    Jiao C; Li S; Xie X
    Appl Opt; 2009 Jul; 48(21):4090-6. PubMed ID: 19623222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion beam figuring strategy for aluminum optics with minimal extra material removal.
    Guan C; Du C; Dai Y; Hu H
    Appl Opt; 2022 May; 61(13):3542-3549. PubMed ID: 36256391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.