These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A comprehensive theoretical model for on-chip microring-based photonic fractional differentiators. Jin B; Yuan J; Wang K; Sang X; Yan B; Wu Q; Li F; Zhou X; Zhou G; Yu C; Lu C; Yaw Tam H; Wai PKA Sci Rep; 2015 Sep; 5():14216. PubMed ID: 26381934 [TBL] [Abstract][Full Text] [Related]
6. Compact Inner-Wall Grating Slot Microring Resonator for Label-Free Sensing. Gu H; Gong H; Wang C; Sun X; Wang X; Yi Y; Chen C; Wang F; Zhang D Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752299 [TBL] [Abstract][Full Text] [Related]
8. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission. Liu X; Shu X Appl Opt; 2017 Aug; 56(24):6714-6719. PubMed ID: 29048008 [TBL] [Abstract][Full Text] [Related]
9. Tunable fractional-order photonic differentiator based on the inverse Raman scattering in a silicon microring resonator. Jin B; Yuan J; Yu C; Sang X; Wu Q; Li F; Wang K; Yan B; Farrell G; Wai PK Opt Express; 2015 May; 23(9):11141-51. PubMed ID: 25969210 [TBL] [Abstract][Full Text] [Related]
11. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip. Zhang W; Li W; Yao J Opt Lett; 2016 Jun; 41(11):2474-7. PubMed ID: 27244392 [TBL] [Abstract][Full Text] [Related]
12. Study of coupling loss on strongly-coupled, ultra compact microring resonators. Tseng CW; Tsai CW; Lin KC; Lee MC; Chen YJ Opt Express; 2013 Mar; 21(6):7250-7. PubMed ID: 23546109 [TBL] [Abstract][Full Text] [Related]
13. Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide. Zhang Y; Hu X; Chen D; Wang L; Li M; Feng P; Xiao X; Yu S Opt Lett; 2018 Apr; 43(7):1586-1589. PubMed ID: 29601036 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system. Zhang Z; Ng GI; Hu T; Qiu H; Guo X; Rouifed MS; Liu C; Wang H Opt Express; 2016 Oct; 24(22):25665-25675. PubMed ID: 27828502 [TBL] [Abstract][Full Text] [Related]
15. Programmable wavelength-tunable second-order optical temporal differentiator based on a linearly chirped fiber Bragg grating and a digital thermal controller. Zhang H; Tang M; Xie Y; Fu S; Liu D; Shum PP Opt Lett; 2014 Apr; 39(7):2004-7. PubMed ID: 24686660 [TBL] [Abstract][Full Text] [Related]
16. Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Ou X; Yang Y; Sun F; Zhang P; Tang B; Li B; Liu R; Liu D; Li Z Opt Express; 2021 Jun; 29(12):19058-19067. PubMed ID: 34154148 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity Enhancement of Group Refractive Index Biosensor through Ring-Down Interferograms of Microring Resonator. Lai H; Kuo TN; Xu JY; Hsu SH; Hsu YC Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744536 [TBL] [Abstract][Full Text] [Related]
18. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Liu D; Zhang C; Liang D; Dai D Opt Express; 2019 Jan; 27(2):416-422. PubMed ID: 30696128 [TBL] [Abstract][Full Text] [Related]
19. Sub-gigahertz bandwidth all-optical tunable differentiator with high-energy efficiency based on a micro-ring resonator. Ye L; Zhang Z; Ma H; Yu H; Wang Y; Yang J Opt Lett; 2024 Mar; 49(5):1341-1344. PubMed ID: 38427008 [TBL] [Abstract][Full Text] [Related]
20. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Park J; Kim H; Lee B Opt Express; 2008 Jan; 16(1):413-25. PubMed ID: 18521173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]