BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34809118)

  • 1. Surface phonon resonance enhanced Goos-Hänchen shift and its sensing application in the mid-infrared region.
    Zhang J; Jiang B; Song Y; Xu Y
    Opt Express; 2021 Oct; 29(21):32973-32982. PubMed ID: 34809118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface exciton polariton enhanced Goos-Hänchen and Imbert-Fedorov shifts and their applications in refractive index sensing.
    Xu Y; Wu L; Ang LK
    Opt Express; 2024 Mar; 32(7):11171-11181. PubMed ID: 38570971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region.
    Zheng G; Chen Y; Bu L; Xu L; Su W
    Opt Lett; 2016 Apr; 41(7):1582-5. PubMed ID: 27192292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of the negative Goos-Hänchen shift of single reflection in a two-dimensional photonic crystal with negative refractive index.
    Jiang Q; Chen J; Liang B; Wang Y; Hu J; Zhuang S
    Opt Lett; 2017 Apr; 42(7):1213-1216. PubMed ID: 28362732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-Infrared Sensor Based on Dirac Semimetal Coupling Structure.
    Zou Y; Liu Y; Song G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect.
    Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F
    Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goos-Hänchen shift for coupled vibrational modes in a semiconductor structure.
    Villegas D; Lazcano Z; Arriaga J; Pérez-Álvarez R; de León-Pérez F
    J Phys Condens Matter; 2024 May; 36(32):. PubMed ID: 38478995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Enhancement of the Goos-Hänchen Shift with a Metasurface Based on Bound States in the Continuum.
    Jiang X; Fang B; Zhan C
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large negative and positive optical Goos-Hänchen shift in photonic crystals.
    Wong YP; Miao Y; Skarda J; Solgaard O
    Opt Lett; 2018 Jun; 43(12):2803-2806. PubMed ID: 29905693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative Goos-Hänchen shift on a concave dielectric interface.
    Zhou LM; Zou CL; Han ZF; Guo GC; Sun FW
    Opt Lett; 2011 Mar; 36(5):624-6. PubMed ID: 21368928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable large positive and negative Goos-Hänchen shifts with a double-Lambda atomic system.
    Othman A; Asiri S; Al-Amri M
    Sci Rep; 2023 Mar; 13(1):3789. PubMed ID: 36882437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical temperature sensing based on the Goos-Hänchen effect.
    Chen CW; Lin WC; Liao LS; Lin ZH; Chiang HP; Leung PT; Sijercic E; Tse WS
    Appl Opt; 2007 Aug; 46(22):5347-51. PubMed ID: 17676150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak measurement of magneto-optical Goos-Hänchen effect.
    Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J
    Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic measurement of an angular Goos-Hänchen shift at a surface plasmon resonance in liquid.
    Olaya CM; Hayazawa N; Balgos MH; Tanaka T
    Appl Opt; 2023 Nov; 62(31):8426-8433. PubMed ID: 38037948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites.
    Zhao B; Gao L
    Opt Express; 2009 Nov; 17(24):21433-41. PubMed ID: 19997383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Goos-Hänchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure.
    Liu Z; Lu F; Jiang L; Lin W; Zheng Z
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34205540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.