These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34809236)

  • 1. Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release.
    Li S; Sanned D; Huang J; Berrocal E; Cai W; Aldén M; Richter M; Li Z
    Opt Express; 2021 Oct; 29(21):34465-34476. PubMed ID: 34809236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle and Phase Analysis of Combusted Iron Particles for Energy Storage and Release.
    Buchheiser S; Deutschmann MP; Rhein F; Allmang A; Fedoryk M; Stelzner B; Harth S; Trimis D; Nirschl H
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl.
    Poliak M; Fomin A; Tsionsky V; Cheskis S; Wlokas I; Rahinov I
    Phys Chem Chem Phys; 2015 Jan; 17(1):680-5. PubMed ID: 25407507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the effect of iron on PM10 formation and design of a particle-generating system using a cocentric diffusion burner flame.
    Yang G
    J Air Waste Manag Assoc; 2004 Aug; 54(8):898-907. PubMed ID: 15373357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame synthesis and in vitro biocompatibility assessment of superparamagnetic iron oxide nanoparticles: cellular uptake, toxicity and proliferation studies.
    Buyukhatipoglu K; Miller TA; Clyne AM
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6834-43. PubMed ID: 19908687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation.
    Paur HR; Baumann W; Mätzing H; Seifert H
    Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of flame behavior and quenching distance in randomly distributed poly-dispersed iron dust cloud combustion within a narrow channel.
    Vahabzadeh Bozorg M; Bidabadi M; Bordbar V
    J Hazard Mater; 2019 Apr; 367():482-491. PubMed ID: 30616198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A setup for studies of laminar flame under microwave irradiation.
    Nilsson EJK; Hurtig T; Ehn A; Fureby C
    Rev Sci Instrum; 2019 Nov; 90(11):113502. PubMed ID: 31779410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of metal additives in light scattering from flame particulates.
    Charalampopoulos TT; Hahn DW; Chang H
    Appl Opt; 1992 Oct; 31(30):6519-28. PubMed ID: 20733870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles.
    Eslamian M; Heine MC
    Nanotechnology; 2008 Jan; 19(4):045712. PubMed ID: 21817529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of combustion-synthesized iron oxide aggregates.
    Charalampopoulos TT; Shu G
    Appl Opt; 2003 Jul; 42(19):3957-69. PubMed ID: 12868836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis.
    Li H; Pokhrel S; Schowalter M; Rosenauer A; Kiefer J; Mädler L
    Combust Flame; 2020 May; 215():389-400. PubMed ID: 32903291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of Flat-Flame Velocities of Diethyl Ether in Air.
    Gillespie F; Metcalfe WK; Dirrenberger P; Herbinet O; Glaude PA; Battin-Leclerc F; Curran HJ
    Energy (Oxf); 2012 Jul; 43(1):140-145. PubMed ID: 23710107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coal particle combustion studied by holography.
    Trolinger JD; Heap MP
    Appl Opt; 1979 Jun; 18(11):1757-62. PubMed ID: 20212545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Aluminum Particles in Solid-Propellant Flames Using 5 kHz LIF of Al Atoms.
    Vilmart G; Dorval N; Devillers R; Fabignon Y; Attal-Trétout B; Bresson A
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31362463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.