BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34809248)

  • 1. Absolute spectral backscatter measurements of large-core multimode PMMA polymer optical fibers.
    Dengler SA; Engelbrecht R; Schmauss B
    Opt Express; 2021 Oct; 29(21):34629-34640. PubMed ID: 34809248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.
    Liehr S; Breithaupt M; Krebber K
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributed Static and Dynamic Strain Measurements in Polymer Optical Fibers by Rayleigh Scattering.
    Coscetta A; Catalano E; Cerri E; Oliveira R; Bilro L; Zeni L; Cennamo N; Minardo A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Humidity Sensing in Concrete Based on Polymer Optical Fiber.
    Lu X; Hicke K; Breithaupt M; Strangfeld C
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber optic refractive index sensors through spectral detection of Rayleigh backscattering in a chemically etched MgO-based nanoparticle-doped fiber.
    Sypabekova M; Korganbayev S; Blanc W; Ayupova T; Bekmurzayeva A; Shaimerdenova M; Dukenbayev K; Molardi C; Tosi D
    Opt Lett; 2018 Dec; 43(24):5945-5948. PubMed ID: 30547976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Optical Fiber for Distributed Acoustic Sensing beyond the Limits of Rayleigh Backscattering.
    Westbrook PS; Feder KS; Kremp T; Monberg EM; Wu H; Zhu B; Huang L; Simoff DA; Shenk S; Handerek VA; Karimi M; Nkansah A; Yau A
    iScience; 2020 Jun; 23(6):101137. PubMed ID: 32454447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source.
    Song H; Cho SB; Kim DU; Jeong S; Kim DY
    Appl Opt; 2011 Jul; 50(21):4000-4. PubMed ID: 21772383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the Influence of Humidity on Stimulated Brillouin Backscattering in Perfluorinated Polymer Optical Fibers.
    Schreier A; Liehr S; Wosniok A; Krebber K
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Assessment of the Transmission Performance of Step Index Polymer Optical Fibers Using a Green Laser Diode.
    Losada MÁ; Mazo M; López A; Muzás C; Mateo J
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage.
    Buerck J; Roth S; Kraemer K; Mathieu H
    J Hazard Mater; 2003 Aug; 102(1):13-28. PubMed ID: 12963280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.
    Bisyarin MA; Kotov OI; Hartog AH; Liokumovich LB; Ushakov NA
    Appl Opt; 2017 Jun; 56(16):4629-4635. PubMed ID: 29047593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.
    Yan A; Huang S; Li S; Chen R; Ohodnicki P; Buric M; Lee S; Li MJ; Chen KP
    Sci Rep; 2017 Aug; 7(1):9360. PubMed ID: 28839282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source.
    Levick AP; Greenwell CL; Ireland J; Woolliams ER; Goodman TM; Bialek A; Fox NP
    Appl Opt; 2014 Jun; 53(16):3508-19. PubMed ID: 24922428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random fiber laser based on artificially controlled backscattering fibers.
    Wang X; Chen D; Li H; She L; Wu Q
    Appl Opt; 2018 Jan; 57(2):258-262. PubMed ID: 29328173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source.
    Wang ZN; Fan MQ; Zhang L; Wu H; Churkin DV; Li Y; Qian XY; Rao YJ
    Opt Express; 2015 Jun; 23(12):15514-20. PubMed ID: 26193531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable all-fiber dissipative-soliton laser with a multimode interference filter.
    Zhang L; Hu J; Wang J; Feng Y
    Opt Lett; 2012 Sep; 37(18):3828-30. PubMed ID: 23041873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber taper characterization by optical backscattering reflectometry.
    Lai YH; Yang KY; Suh MG; Vahala KJ
    Opt Express; 2017 Sep; 25(19):22312-22327. PubMed ID: 29041544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology.
    Liu Y; Yang J; Wu B; Lu B; Shuai L; Wang Z; Ye L; Ying K; Ye Q; Qu R; Cai H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercontinuum generation in submicrometer diameter silica fibers.
    Gattass RR; Svacha GT; Tong L; Mazur E
    Opt Express; 2006 Oct; 14(20):9408-14. PubMed ID: 19529325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.
    Blume NG; Wagner S
    Appl Opt; 2015 Jul; 54(21):6406-9. PubMed ID: 26367820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.