These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34809315)

  • 61. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices.
    Huang CC
    Opt Express; 2013 Dec; 21(24):29544-57. PubMed ID: 24514506
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dispersion Theory of Surface Plasmon Polaritons on Bilayer Graphene Metasurfaces.
    Liu YQ; Ren Z; Yin H; Sun J; Li L
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683660
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Excitation of surface plasmon polaritons in a gold nanoslab on ion-exchanged waveguide technology.
    Tellez-Limon R; Blaize S; Gardillou F; Coello V; Salas-Montiel R
    Appl Opt; 2020 Jan; 59(2):572-578. PubMed ID: 32225343
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mode properties in metallic and non-metallic plasmonic waveguides.
    Liu W; Chen Y; Hu X; Wen L; Jin L; Su Q; Chen Q
    Appl Opt; 2017 Jun; 56(16):4861-4867. PubMed ID: 29047626
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.
    Ohana D; Desiatov B; Mazurski N; Levy U
    Nano Lett; 2016 Dec; 16(12):7956-7961. PubMed ID: 27960507
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance.
    Ding L; Qin J; Xu K; Wang L
    Opt Express; 2016 Feb; 24(4):3432-40. PubMed ID: 26907002
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sodium-Based Cylindrical Plasmonic Waveguides in the Near-Infrared.
    Teng D; Tian Y; Hu X; Guan Z; Gao W; Li P; Fang H; Yan J; Wang Z; Wang K
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745290
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A complementary study to "Hybrid hollow core fibers with embedded wires as THz waveguides" and "Two-wire terahertz fibers with porous dielectric support:" comment.
    Markov A; Guerboukha H; Argyros A; Skorobogatiy M
    Opt Express; 2013 Nov; 21(23):27802-3. PubMed ID: 24514296
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tunable infrared plasmonic devices using graphene/insulator stacks.
    Yan H; Li X; Chandra B; Tulevski G; Wu Y; Freitag M; Zhu W; Avouris P; Xia F
    Nat Nanotechnol; 2012 Apr; 7(5):330-4. PubMed ID: 22522668
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity.
    Meng Y; Hu F; Shen Y; Yang Y; Xiao Q; Fu X; Gong M
    Sci Rep; 2018 Sep; 8(1):13362. PubMed ID: 30190496
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultra-compact terahertz plasmonic wavelength diplexer.
    Yuan M; Wang Q; Li Y; Zhang X; Han J; Zhang W
    Appl Opt; 2020 Nov; 59(33):10451-10456. PubMed ID: 33361978
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.
    Duffin TJ; Nielsen MP; Diaz F; Palomba S; Maier SA; Oulton RF
    Opt Lett; 2016 Jan; 41(1):155-8. PubMed ID: 26696182
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss.
    Li Q; Song Y; Zhou G; Su Y; Qiu M
    Opt Lett; 2010 Oct; 35(19):3153-5. PubMed ID: 20890317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes.
    Bian Y; Gong Q
    Opt Express; 2013 Oct; 21(20):23907-20. PubMed ID: 24104301
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient directional coupling from multilayer-graphene-based long-range SPP waveguide to metal-based hybrid SPP waveguide in mid-infrared range.
    Liu JP; Wang WL; Xie F; Luo X; Zhou X; Lei M; Yuan YJ; Long MQ; Wang LL
    Opt Express; 2018 Oct; 26(22):29509-29520. PubMed ID: 30470113
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical forces in hybrid plasmonic waveguides.
    Yang X; Liu Y; Oulton RF; Yin X; Zhang X
    Nano Lett; 2011 Feb; 11(2):321-8. PubMed ID: 21229998
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wave propagation in deep-subwavelength mode waveguides.
    Liu K; Xu W; Zhu ZH; Ye WM; Yuan XD; Zeng C
    Opt Lett; 2012 Jul; 37(14):2826-8. PubMed ID: 22825147
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In-plane electric field confinement engineering in graphene-based hybrid plasmonic waveguides.
    Wang B; Blaize S; Kim S; Yang H; Salas-Montiel R
    Appl Opt; 2019 Sep; 58(27):7503-7509. PubMed ID: 31674401
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement.
    Bian Y; Gong Q
    Appl Opt; 2013 Aug; 52(23):5733-41. PubMed ID: 23938426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.