BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34809345)

  • 1. Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing.
    Picazo-Bueno JA; Micó V
    Opt Express; 2021 Nov; 29(24):39904-39919. PubMed ID: 34809345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube.
    Picazo-Bueno JA; Trusiak M; Micó V
    Opt Express; 2019 Feb; 27(4):5655-5669. PubMed ID: 30876163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography.
    Yoneda N; Onishi A; Saita Y; Komuro K; Nomura T
    Opt Express; 2021 Feb; 29(4):4783-4801. PubMed ID: 33726027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIE-GANs: single-shot quantitative phase imaging using transport of intensity equation with integration of GANs.
    Thapa V; Galande AS; Ram GHP; John R
    J Biomed Opt; 2024 Jan; 29(1):016010. PubMed ID: 38293292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible dynamic quantitative phase imaging based on division of focal plane polarization imaging technique.
    Fan C; Li J; Du Y; Hu Z; Chen H; Yang Z; Zhang G; Zhang L; Zhao Z; Zhao H
    Opt Express; 2023 Oct; 31(21):33830-33841. PubMed ID: 37859154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-shot quantitative phase imaging with phase modulation of a liquid crystal spatial light modulator (LC-SLM) under white light illumination.
    Fan C; Zhao H; Zhao Z; Li J; Du Y; Yang X; Zhang L
    Opt Lett; 2022 Oct; 47(20):5264-5267. PubMed ID: 36240338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot higher-order transport-of-intensity quantitative phase imaging using deep learning.
    Yoneda N; Kakei S; Komuro K; Onishi A; Saita Y; Nomura T
    Appl Opt; 2021 Oct; 60(28):8802-8808. PubMed ID: 34613106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time phase retrieval in division of aperture microscopy with the transport of intensity equation.
    Fernández A; Llaguno JM; Silva A; Alonso JR
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):A55-A62. PubMed ID: 38437430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method.
    Wang J; Zhao X; Wang Y; Li D
    Opt Express; 2024 Jan; 32(2):2081-2096. PubMed ID: 38297745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging.
    Hayes-Rounds C; Bogue-Jimenez B; Garcia-Sucerquia J; Skalli O; Doblas A
    J Biomed Opt; 2020 Aug; 25(8):1-11. PubMed ID: 32755077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninterferometric single-shot quantitative phase microscopy.
    Zuo C; Chen Q; Qu W; Asundi A
    Opt Lett; 2013 Sep; 38(18):3538-41. PubMed ID: 24104808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric Metasurface Enabled Compact, Single-Shot Digital Holography for Quantitative Phase Imaging.
    Sardana J; Devinder S; Zhu W; Agrawal A; Joseph J
    Nano Lett; 2023 Dec; 23(23):11112-11119. PubMed ID: 38037916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.
    Li Y; Di J; Ma C; Zhang J; Zhong J; Wang K; Xi T; Zhao J
    Opt Express; 2018 Jan; 26(1):586-593. PubMed ID: 29328336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-shot off-axis digital holographic system with extended field-of-view by using multiplexing method.
    Kumar M; Pensia L; Kumar R
    Sci Rep; 2022 Sep; 12(1):16462. PubMed ID: 36180504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-shot quantitative phase imaging as an extension of differential interference contrast microscopy.
    Yasuhiko O; Takeuchi K; Yamada H; Ueda Y
    Genes Cells; 2021 Aug; 26(8):596-610. PubMed ID: 34086395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational Hilbert Quantitative Phase Imaging.
    Trusiak M; Cywińska M; Micó V; Picazo-Bueno JÁ; Zuo C; Zdańkowski P; Patorski K
    Sci Rep; 2020 Aug; 10(1):13955. PubMed ID: 32811839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-surface multiplexed quantitative dynamic phase microscopic imaging based on the transport-of-intensity equation.
    Cheng W; Cheng H; Feng Y; Zhang X
    Appl Opt; 2023 Sep; 62(26):6974-6984. PubMed ID: 37707036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lensless Three-Dimensional Quantitative Phase Imaging Using Phase Retrieval Algorithm.
    Anand V; Katkus T; Linklater DP; Ivanova EP; Juodkazis S
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy.
    Trusiak M; Picazo-Bueno JA; Patorski K; Zdańkowski P; Mico V
    J Biomed Opt; 2019 Sep; 24(9):1-8. PubMed ID: 31522487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.