These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34809631)

  • 1. Improving random forest predictions in small datasets from two-phase sampling designs.
    Han S; Williamson BD; Fong Y
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):322. PubMed ID: 34809631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block Forests: random forests for blocks of clinical and omics covariate data.
    Hornung R; Wright MN
    BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis.
    Jiang T; Gradus JL; Lash TL; Fox MP
    Am J Epidemiol; 2021 Sep; 190(9):1830-1840. PubMed ID: 33517416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of imbalanced data using machine learning algorithms to predict the risk of renal graft failures in Ethiopia.
    Mulugeta G; Zewotir T; Tegegne AS; Juhar LH; Muleta MB
    BMC Med Inform Decis Mak; 2023 May; 23(1):98. PubMed ID: 37217892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
    Speiser JL
    J Biomed Inform; 2021 May; 117():103763. PubMed ID: 33781921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous ensemble learning for enhanced crash forecasts - A frequentist and machine learning based stacking framework.
    Ahmad N; Wali B; Khattak AJ
    J Safety Res; 2023 Feb; 84():418-434. PubMed ID: 36868672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretability and Class Imbalance in Prediction Models for Pain Volatility in Manage My Pain App Users: Analysis Using Feature Selection and Majority Voting Methods.
    Rahman QA; Janmohamed T; Clarke H; Ritvo P; Heffernan J; Katz J
    JMIR Med Inform; 2019 Nov; 7(4):e15601. PubMed ID: 31746764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of variable selection methods for clinical predictive modeling.
    Sanchez-Pinto LN; Venable LR; Fahrenbach J; Churpek MM
    Int J Med Inform; 2018 Aug; 116():10-17. PubMed ID: 29887230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-enabled risk prediction of chronic obstructive pulmonary disease with unbalanced data.
    Wang X; Ren H; Ren J; Song W; Qiao Y; Ren Z; Zhao Y; Linghu L; Cui Y; Zhao Z; Chen L; Qiu L
    Comput Methods Programs Biomed; 2023 Mar; 230():107340. PubMed ID: 36640604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibrating random forests for probability estimation.
    Dankowski T; Ziegler A
    Stat Med; 2016 Sep; 35(22):3949-60. PubMed ID: 27074747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of multi-output and stacking methods on feed efficiency prediction from genotype using machine learning algorithms.
    Mora M; González P; Quevedo JR; Montañés E; Tusell L; Bergsma R; Piles M
    J Anim Breed Genet; 2023 Nov; 140(6):638-652. PubMed ID: 37403756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease.
    Junaid M; Ali S; Eid F; El-Sappagh S; Abuhmed T
    Comput Methods Programs Biomed; 2023 Jun; 234():107495. PubMed ID: 37003039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of data balancing approaches on the prediction of metabolic syndrome using non-invasive parameters based on random forest.
    Mohseni-Takalloo S; Mohseni H; Mozaffari-Khosravi H; Mirzaei M; Hosseinzadeh M
    BMC Bioinformatics; 2024 Jan; 25(1):18. PubMed ID: 38212697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
    Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E
    BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable importance-weighted Random Forests.
    Liu Y; Zhao H
    Quant Biol; 2017 Dec; 5(4):338-351. PubMed ID: 30034909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning.
    Isabona J; Imoize AL; Kim Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.