These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34809967)

  • 1. Comfort and fit perception based on 3D anthropometry for ear-related product design.
    Fu F; Luximon Y
    Appl Ergon; 2022 Apr; 100():103640. PubMed ID: 34809967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D anthropometry-based quantified comfort model for children's eyeglasses design.
    Zhang J; Chen J; Fu F; Luximon Y
    Appl Ergon; 2023 Oct; 112():104054. PubMed ID: 37315441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropometric analysis of 3D ear scans of Koreans and Caucasians for ear product design.
    Lee W; Yang X; Jung H; Bok I; Kim C; Kwon O; You H
    Ergonomics; 2018 Nov; 61(11):1480-1495. PubMed ID: 29989490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D human ear modelling with parameterization technique and variation analysis.
    Fu F; Luximon A; Luximon Y
    Ergonomics; 2024 May; 67(5):638-649. PubMed ID: 37482812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the external acoustic meatus for ergonomic design: part II - anthropometric variations of the external acoustic meatus by sex, age and side in Chinese population.
    Fan H; Yu S; Wang M; Li M; Zhao X; Ren Y; Zhang S; Chen D; Harris Adamson C
    Ergonomics; 2021 May; 64(5):657-670. PubMed ID: 33350898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surveying the comfort perception of the ergonomic design of bluetooth earphones.
    Chiu HP; Chiang HY; Liu CH; Wang MH; Chiou WK
    Work; 2014; 49(2):235-43. PubMed ID: 24004775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating anthropometry into design of ear-related products.
    Liu BS
    Appl Ergon; 2008 Jan; 39(1):115-21. PubMed ID: 17374520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods of 3D data applications to inform design decisions for physical comfort.
    Stavrakos SK; Ahmed-Kristensen S
    Work; 2016 Oct; 55(2):321-334. PubMed ID: 27689582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the methodology and applications of anthropometry in ergonomics and product design.
    Dianat I; Molenbroek J; Castellucci HI
    Ergonomics; 2018 Dec; 61(12):1696-1720. PubMed ID: 30022717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the external acoustic meatus for ergonomic design: part I - measurement of the external acoustic meatus using casting, scanning and rapid estimation approaches.
    Fan H; Yu S; Wang M; Li M; Chu J; Yan Y; Zhang S; Chen D; Harris-Adamson C
    Ergonomics; 2021 May; 64(5):640-656. PubMed ID: 33258415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fit, stability and comfort assessment of custom-fitted bicycle helmet inner liner designs, based on 3D anthropometric data.
    Pang TY; Lo TST; Ellena T; Mustafa H; Babalija J; Subic A
    Appl Ergon; 2018 Apr; 68():240-248. PubMed ID: 29409640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of variations in the tragus expansion angle on physical comfort for in-ear wearables.
    Wang M; Fan H; Yu S; Zhao X; Wang L; Li W; Wang L; Yu M; Chu J; Zhang S; Chen D
    Ergonomics; 2022 Oct; 65(10):1352-1372. PubMed ID: 35062857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using archetypes to create user panels for usability studies: Streamlining focus groups and user studies.
    Stavrakos SK; Ahmed-Kristensen S; Goldman T
    Appl Ergon; 2016 Sep; 56():108-16. PubMed ID: 27184318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: a literature review.
    Hiemstra-van Mastrigt S; Groenesteijn L; Vink P; Kuijt-Evers LFM
    Ergonomics; 2017 Jul; 60(7):889-911. PubMed ID: 27633349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable Sizing.
    Robinette KM; Veitch D
    Hum Factors; 2016 Aug; 58(5):657-64. PubMed ID: 27230489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-resolution description of three-dimensional anthropometric data for design simplification.
    Niu J; Li Z; Salvendy G
    Appl Ergon; 2009 Jul; 40(4):807-10. PubMed ID: 18639863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ergonomics intervention on an alternative design of a spinal board.
    Zadry HR; Susanti L; Rahmayanti D
    Int J Occup Saf Ergon; 2017 Sep; 23(3):393-403. PubMed ID: 27075505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automobile seat comfort: occupant preferences vs. anthropometric accommodation.
    Kolich M
    Appl Ergon; 2003 Mar; 34(2):177-84. PubMed ID: 12628575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the trends and causes of changes in human anthropometric dimensions over the past three decades: a challenge for ergonomic design.
    Goleij N; Hafezi P; Ahmadi O
    Int J Occup Saf Ergon; 2024 Jun; 30(2):480-485. PubMed ID: 38528827
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of aircraft seat pitch on comfort.
    Anjani S; Li W; Ruiter IA; Vink P
    Appl Ergon; 2020 Oct; 88():103132. PubMed ID: 32678792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.