BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34810310)

  • 1. Synthesis and characterization of arginine-doped heliotrope leaves with high clean-up capacity for crystal violet dye from aqueous media.
    Brini L; Hsini A; Naciri Y; Bouziani A; Ajmal Z; H'Maida K; Boulahya A; Arahou M; Bakiz B; Albourine A; Fekhaoui M
    Water Sci Technol; 2021 Nov; 84(9):2265-2277. PubMed ID: 34810310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urtica dioica leaves-calcium alginate as a natural, low cost and very effective bioadsorbent beads in elimination of dyes from aqueous medium: Equilibrium isotherms and thermodynamic studies.
    Derafa G; Zaghouane-Boudiaf H
    Int J Biol Macromol; 2019 Mar; 124():915-921. PubMed ID: 30502429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of crystal violet dye from aqueous solutions using sodium hydroxide-modified avocado shells: kinetics and isotherms modeling.
    Ait Haki M; Imgharn A; Aarab N; Hsini A; Essekri A; Laabd M; El Jazouli H; Elamine M; Lakhmiri R; Albourine A
    Water Sci Technol; 2022 Jan; 85(1):433-448. PubMed ID: 35050894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating cottonwood seeds as a low-cost biosorbent for crystal violet removal from aqueous matrics.
    Asghari E; Saraji M
    Int J Phytoremediation; 2023; 25(2):137-145. PubMed ID: 35475769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the promising potential of fallen bamboo leaves (
    Mahato R; Qaiyum MA; Samal PP; Dutta S; Dey B; Dey S
    Int J Phytoremediation; 2023; 25(8):1042-1051. PubMed ID: 36168892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation.
    Nakhjiri MT; Marandi GB; Kurdtabar M
    Int J Biol Macromol; 2018 Oct; 117():152-166. PubMed ID: 29802921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorptive removal of crystal violet dye from aqueous solutions by
    Rehman R; Majeed S
    Int J Phytoremediation; 2022; 24(10):1004-1013. PubMed ID: 34689668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions.
    Filho ACD; Mazzocato AC; Dotto GL; Thue PS; Pavan FA
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19909-19919. PubMed ID: 28689285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green production of hydrochar nut group from waste materials in subcritical water medium and investigation of their adsorption performance for crystal violet.
    Saleh M; Isik Z; Yabalak E; Yalvac M; Dizge N
    Water Environ Res; 2021 Dec; 93(12):3075-3089. PubMed ID: 34734653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.
    Masoumi A; Hemmati K; Ghaemy M
    Chemosphere; 2016 Mar; 146():253-62. PubMed ID: 26735725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method.
    Mosoarca G; Vancea C; Popa S; Gheju M; Boran S
    Sci Rep; 2020 Oct; 10(1):17676. PubMed ID: 33077788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP).
    Ahmad R
    J Hazard Mater; 2009 Nov; 171(1-3):767-73. PubMed ID: 19604639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel, eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive removal of crystal violet dye from its aqueous solutions.
    Mittal J; Ahmad R; Ejaz MO; Mariyam A; Mittal A
    Int J Phytoremediation; 2022; 24(8):796-807. PubMed ID: 34559594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of crystal violet from aqueous solutions with Centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: Kinetic, isotherm and thermodynamic studies.
    Naderi P; Shirani M; Semnani A; Goli A
    Ecotoxicol Environ Saf; 2018 Nov; 163():372-381. PubMed ID: 30059882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.
    Saeed A; Sharif M; Iqbal M
    J Hazard Mater; 2010 Jul; 179(1-3):564-72. PubMed ID: 20381962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sono-assisted adsorption of Cristal Violet dye onto Tunisian Smectite Clay: Characterization, kinetics and adsorption isotherms.
    Hamza W; Dammak N; Hadjltaief HB; Eloussaief M; Benzina M
    Ecotoxicol Environ Saf; 2018 Nov; 163():365-371. PubMed ID: 30059881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of activated Chromolaena odorata biomass for the removal of crystal violet from aqueous solution: kinetic, equilibrium, and thermodynamic study.
    Soosai MR; Moorthy IMG; Varalakshmi P; Syed A; Elgorban AM; Rigby SP; Natesan S; Gunaseelan S; Joshya YC; Baskar R; Kumar RS; Karthikumar S
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):14265-14283. PubMed ID: 36149551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.
    Saha PD; Chakraborty S; Chowdhury S
    Colloids Surf B Biointerfaces; 2012 Apr; 92():262-70. PubMed ID: 22221460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of novel iminodiacetic acid-functionalized carboxymethyl cellulose microbeads for efficient removal of cationic crystal violet dye from aqueous solutions.
    Omer AM; Elgarhy GS; El-Subruiti GM; Khalifa RE; Eltaweil AS
    Int J Biol Macromol; 2020 Apr; 148():1072-1083. PubMed ID: 31981664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.
    Singh KP; Gupta S; Singh AK; Sinha S
    J Hazard Mater; 2011 Feb; 186(2-3):1462-73. PubMed ID: 21211903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.