BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 3481104)

  • 41. Cryogenic X-ray detectors for synchrotron science.
    Friedrich S
    J Synchrotron Radiat; 2006 Mar; 13(Pt 2):159-71. PubMed ID: 16495616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of quantitative procedures for X-ray microanalysis of environmental particles.
    Choël M; Deboudt K; Flament P
    Microsc Res Tech; 2007 Nov; 70(11):996-1002. PubMed ID: 17661395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X-ray microanalysis of organic thin sections in TEM using an UTW Si(Li) detector: comparison of quantification methods.
    Laquerriere P; Banchet V; Michel J; Zierold K; Balossier G; Bonhomme P
    Microsc Res Tech; 2001 Jan; 52(2):231-8. PubMed ID: 11169870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combined energy detector-wavelength dispersive spectrometer electron probe microanalysis of biological soft tissue samples.
    Ingram FD; Ingram MJ
    Scan Electron Microsc; 1983; (Pt 2):853-60. PubMed ID: 6635579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tomographic Spectral Imaging with Multivariate Statistical Analysis: Comprehensive 3D Microanalysis.
    Kotula PG; Keenan MR; Michael JR
    Microsc Microanal; 2006 Feb; 12(1):36-48. PubMed ID: 17481340
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous use of EDS, windowless EDS, BE and SE detectors and digital real-time line scanning for the x-ray microanalysis of frozen-hydrated biological specimens.
    Marshall AT
    Scan Electron Microsc; 1981; (Pt 2):327-43. PubMed ID: 7034172
    [No Abstract]   [Full Text] [Related]  

  • 47. Proton-induced X-ray emission analysis - a new tool in quantitative dermatology.
    Malmqvist KG; Carlsson LE; Akselsson KR; Forslind B
    Scan Electron Microsc; 1983; (Pt 4):1815-25. PubMed ID: 6669949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray microanalysis of frozen-hydrated specimens.
    Zierold K
    Scan Electron Microsc; 1983; (Pt 2):809-26. PubMed ID: 6635577
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis.
    Labiche JC; Mathon O; Pascarelli S; Newton MA; Ferre GG; Curfs C; Vaughan G; Homs A; Carreiras DF
    Rev Sci Instrum; 2007 Sep; 78(9):091301. PubMed ID: 17902940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology.
    Forslind B
    Scan Electron Microsc; 1984; (Pt 1):183-206. PubMed ID: 6740224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. X-ray mapping in electron-beam instruments.
    Friel JJ; Lyman CE
    Microsc Microanal; 2006 Feb; 12(1):2-25. PubMed ID: 17481338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Total rate imaging with x-rays (TRIX)--a simple method of forming a non-projection x-ray image in the SEM using an energy dispersive detector and its application to biological specimens.
    Ingram P; Shelburne JD
    Scan Electron Microsc; 1980; (Pt 2):285-95. PubMed ID: 7423121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance of a four-element Si drift detector for X-ray absorption fine-structure spectroscopy: resolution, maximum count rate, and dead-time correction with incorporation into the ATHENA data analysis software.
    Woicik JC; Ravel B; Fischer DA; Newburgh WJ
    J Synchrotron Radiat; 2010 May; 17(3):409-13. PubMed ID: 20400841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool.
    Kotula PG; Keenan MR; Michael JR
    Microsc Microanal; 2003 Feb; 9(1):1-17. PubMed ID: 12597783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray absorption fine structure spectroscopic studies of Octakis(DMSO)lanthanoid(III) complexes in solution and in the solid iodides.
    Persson I; Risberg ED; D'Angelo P; De Panfilis S; Sandström M; Abbasi A
    Inorg Chem; 2007 Sep; 46(19):7742-8. PubMed ID: 17718479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological X-ray Microanalysis: The Past, Present Practices, and Future Prospects.
    Echlin P
    Microsc Microanal; 2001 Mar; 7(2):211-219. PubMed ID: 12597833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. X-ray microanalysis as applied to fungal tissues.
    Thibaut M; Ansel M; de Azevedo Carneiro J
    Br J Exp Pathol; 1977 Apr; 58(2):209-14. PubMed ID: 558789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the distribution of elements in snail shell with the use of synchrotron-based, micro-beam X-ray fluorescence spectrometry.
    Rao DV; Swapna M; Cesareo R; Brunetti A; Akatsuka T; Yuasa T; Takeda T; Tromba G; Gigante GE
    J Trace Elem Med Biol; 2009; 23(4):251-7. PubMed ID: 19747620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of experimental and theoretical kASi factors for a 200-kV analytical electron microscope.
    Sheridan PJ
    J Electron Microsc Tech; 1989 Jan; 11(1):41-61. PubMed ID: 2915261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.