BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34811351)

  • 1. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system.
    Ye Q; Hsieh CY; Yang Z; Kang Y; Chen J; Cao D; He S; Hou T
    Nat Commun; 2021 Nov; 12(1):6775. PubMed ID: 34811351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning.
    Thafar MA; Alshahrani M; Albaradei S; Gojobori T; Essack M; Gao X
    Sci Rep; 2022 Mar; 12(1):4751. PubMed ID: 35306525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
    Zhang C; Zang T; Zhao T
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38348746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining.
    Djeddi WE; Hermi K; Ben Yahia S; Diallo G
    BMC Bioinformatics; 2023 Dec; 24(1):488. PubMed ID: 38114937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised graph co-contrastive learning for drug-target interaction prediction.
    Li Y; Qiao G; Gao X; Wang G
    Bioinformatics; 2022 May; 38(10):2847-2854. PubMed ID: 35561181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDTips: a multimodal-data-based drug-target interaction prediction system fusing knowledge, gene expression profile, and structural data.
    Xia X; Zhu C; Zhong F; Liu L
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37379157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Knowledge-Graph-Based Multimodal Deep Learning Framework for Identifying Drug-Drug Interactions.
    Zhang J; Chen M; Liu J; Peng D; Dai Z; Zou X; Li Z
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph.
    Zhu Y; Che C; Jin B; Zhang N; Su C; Wang F
    Health Informatics J; 2020 Dec; 26(4):2737-2750. PubMed ID: 32674665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RDKG-115: Assisting drug repurposing and discovery for rare diseases by trimodal knowledge graph embedding.
    Zhu C; Xia X; Li N; Zhong F; Yang Z; Liu L
    Comput Biol Med; 2023 Sep; 164():107262. PubMed ID: 37481946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing graph machine learning within drug discovery and development.
    Gaudelet T; Day B; Jamasb AR; Soman J; Regep C; Liu G; Hayter JBR; Vickers R; Roberts C; Tang J; Roblin D; Blundell TL; Bronstein MM; Taylor-King JP
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.