These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 34811925)
1. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT Zeng X; Yao D; Liu L; Zhang Y; Lai J; Zhong J; Zha X; Lu Y; Jin Z; Chen S; Li Y; Xu L Asia Pac J Clin Oncol; 2022 Aug; 18(4):456-464. PubMed ID: 34811925 [TBL] [Abstract][Full Text] [Related]
2. Increased Expression of TIGIT/CD57 in Peripheral Blood/Bone Marrow NK Cells in Patients with Chronic Myeloid Leukemia. Yao D; Xu L; Liu L; Zeng X; Zhong J; Lai J; Zheng R; Jin Z; Chen S; Zha X; Huang X; Lu Y Biomed Res Int; 2020; 2020():9531549. PubMed ID: 33102599 [TBL] [Abstract][Full Text] [Related]
3. Lymphoid subsets in acute myeloid leukemias: increased number of cells with NK phenotype and normal T-cell distribution. Vidriales MB; Orfao A; López-Berges MC; González M; Hernandez JM; Ciudad J; López A; Moro MJ; Martínez M; San Miguel JF Ann Hematol; 1993 Nov; 67(5):217-22. PubMed ID: 7694663 [TBL] [Abstract][Full Text] [Related]
4. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Brauneck F; Seubert E; Wellbrock J; Schulze Zur Wiesch J; Duan Y; Magnus T; Bokemeyer C; Koch-Nolte F; Menzel S; Fiedler W Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884723 [TBL] [Abstract][Full Text] [Related]
5. Higher TIGIT Jin Z; Lan T; Zhao Y; Du J; Chen J; Lai J; Xu L; Chen S; Zhong X; Wu X; Li Y Immunol Invest; 2022 Jan; 51(1):40-50. PubMed ID: 32819181 [TBL] [Abstract][Full Text] [Related]
6. Increased frequency of TIGIT Brauneck F; Haag F; Woost R; Wildner N; Tolosa E; Rissiek A; Vohwinkel G; Wellbrock J; Bokemeyer C; Schulze Zur Wiesch J; Ackermann C; Fiedler W Oncoimmunology; 2021 Jun; 10(1):1930391. PubMed ID: 34211801 [TBL] [Abstract][Full Text] [Related]
7. Higher TIGIT+ γδ T Hou Q; Wang P; Kong X; Chen J; Yao C; Luo X; Li Y; Jin Z; Wu X Front Immunol; 2024; 15():1321126. PubMed ID: 38711501 [TBL] [Abstract][Full Text] [Related]
8. PD-1 and TIGIT Are Highly Co-Expressed on CD8 Xu L; Liu L; Yao D; Zeng X; Zhang Y; Lai J; Zhong J; Zha X; Zheng R; Lu Y; Li M; Jin Z; Hebbar Subramanyam S; Chen S; Huang X; Li Y Front Oncol; 2021; 11():686156. PubMed ID: 34490086 [TBL] [Abstract][Full Text] [Related]
9. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Seel K; Schirrmann RL; Stowitschek D; Ioseliani T; Roiter L; Knierim A; André MC Cancer Immunol Immunother; 2024 Jul; 73(9):180. PubMed ID: 38967649 [TBL] [Abstract][Full Text] [Related]
10. Loss of CD28 expression associates with severe T-cell exhaustion in acute myeloid leukemia. Huang Y; Zheng H; Zhu Y; Hong Y; Zha J; Lin Z; Li Z; Wang C; Fang Z; Yu X; Liu L; Xu B Front Immunol; 2023; 14():1139517. PubMed ID: 36960073 [TBL] [Abstract][Full Text] [Related]
11. Increased expression of TIGIT and KLRG1 correlates with impaired CD56 Nie Y; Liu D; Yang W; Li Y; Zhang L; Cheng X; Chen R; Yuan B; Zhang G; Wang H Virol J; 2022 Apr; 19(1):68. PubMed ID: 35413989 [TBL] [Abstract][Full Text] [Related]
12. Bone marrow mesenchymal stem cells regulate the dysfunction of NK cells via the T cell immunoglobulin and ITIM domain in patients with myelodysplastic syndromes. Liu Z; Guo Y; Huang L; Jia Y; Liu H; Peng F; Duan L; Zhang H; Fu R Cell Commun Signal; 2022 Oct; 20(1):169. PubMed ID: 36303184 [TBL] [Abstract][Full Text] [Related]
13. [The Expression and Function of NK Cells in Patients with Acute Myeloid Leukemia]. Liu L; Chen X; Jin HM; Zhao SS; Zhu Y; Qian SX; Wu YJ Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Feb; 30(1):49-55. PubMed ID: 35123603 [TBL] [Abstract][Full Text] [Related]
14. Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Liu G; Zhang Q; Yang J; Li X; Xian L; Li W; Lin T; Cheng J; Lin Q; Xu X; Li Q; Lin Y; Zhou M; Shen E Cancer Immunol Immunother; 2022 Feb; 71(2):277-287. PubMed ID: 34129052 [TBL] [Abstract][Full Text] [Related]
15. Minimal residual disease in acute myelogenous leukemia with PML/RAR alpha or AML1/ETO mRNA and phenotypic analysis of possible T and natural killer cells in bone marrow. Inokuchi K; Iwakiri R; Futaki M; Hanawa H; Tanosaki S; Nomura T; Dan K Leuk Lymphoma; 1998 May; 29(5-6):553-61. PubMed ID: 9643569 [TBL] [Abstract][Full Text] [Related]
16. Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes. Aggarwal N; Swerdlow SH; TenEyck SP; Boyiadzis M; Felgar RE Cytometry B Clin Cytom; 2016 Jul; 90(4):349-57. PubMed ID: 26648320 [TBL] [Abstract][Full Text] [Related]
17. Immune checkpoint molecule DNAM-1/CD112 axis is a novel target for natural killer-cell therapy in acute myeloid leukemia. Kaito Y; Sugimoto E; Nakamura F; Tsukune Y; Sasaki M; Yui S; Yamaguchi H; Goyama S; Nannya Y; Mitani K; Tamura H; Imai Y Haematologica; 2024 Apr; 109(4):1107-1120. PubMed ID: 37731380 [TBL] [Abstract][Full Text] [Related]
18. [Expression of Costimulatory Molecule Tim3 on NK Cells and Its Subsets in Patients with Acute Myeloid Leukemia]. Wu WH; Shao JW; Jiang YL Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2020 Dec; 28(6):1899-1903. PubMed ID: 33283717 [TBL] [Abstract][Full Text] [Related]
19. Higher frequency of peripheral blood CD103 Liu L; Lai W; Zhuo X; Chen S; Luo X; Tan H Front Immunol; 2024; 15():1437726. PubMed ID: 39391310 [TBL] [Abstract][Full Text] [Related]
20. Natural Killer Cell Subpopulations and Inhibitory Receptor Dynamics in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cianga VA; Campos Catafal L; Cianga P; Pavel Tanasa M; Cherry M; Collet P; Tavernier E; Guyotat D; Rusu C; Aanei CM Front Immunol; 2021; 12():665541. PubMed ID: 33986753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]