These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 34812388)
1. MPS-Net: Multi-Point Supervised Network for CT Image Segmentation of COVID-19. Pei HY; Yang D; Liu GR; Lu T IEEE Access; 2021; 9():47144-47153. PubMed ID: 34812388 [TBL] [Abstract][Full Text] [Related]
2. MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT. Zheng B; Liu Y; Zhu Y; Yu F; Jiang T; Yang D; Xu T IEEE Access; 2020; 8():185786-185795. PubMed ID: 34812359 [TBL] [Abstract][Full Text] [Related]
3. SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning. Wang X; Yuan Y; Guo D; Huang X; Cui Y; Xia M; Wang Z; Bai C; Chen S Med Image Anal; 2022 Jul; 79():102459. PubMed ID: 35544999 [TBL] [Abstract][Full Text] [Related]
4. MESTrans: Multi-scale embedding spatial transformer for medical image segmentation. Liu Y; Zhu Y; Xin Y; Zhang Y; Yang D; Xu T Comput Methods Programs Biomed; 2023 May; 233():107493. PubMed ID: 36965298 [TBL] [Abstract][Full Text] [Related]
5. ADU-Net: An Attention Dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images. Saha S; Dutta S; Goswami B; Nandi D Biomed Signal Process Control; 2023 Aug; 85():104974. PubMed ID: 37122956 [TBL] [Abstract][Full Text] [Related]
6. MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images. Chi J; Zhang S; Han X; Wang H; Wu C; Yu X Signal Process Image Commun; 2022 Oct; 108():116835. PubMed ID: 35935468 [TBL] [Abstract][Full Text] [Related]
7. Multi-Attention Segmentation Networks Combined with the Sobel Operator for Medical Images. Lu F; Tang C; Liu T; Zhang Z; Li L Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904754 [TBL] [Abstract][Full Text] [Related]
8. HFCF-Net: A hybrid-feature cross fusion network for COVID-19 lesion segmentation from CT volumetric images. Wang Y; Yang Q; Tian L; Zhou X; Rekik I; Huang H Med Phys; 2022 Jun; 49(6):3797-3815. PubMed ID: 35301729 [TBL] [Abstract][Full Text] [Related]
9. Automatic Segmentation of Novel Coronavirus Pneumonia Lesions in CT Images Utilizing Deep-Supervised Ensemble Learning Network. Peng Y; Zhang Z; Tu H; Li X Front Med (Lausanne); 2021; 8():755309. PubMed ID: 35047520 [No Abstract] [Full Text] [Related]
10. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations. Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700 [TBL] [Abstract][Full Text] [Related]
11. DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images. Xie F; Huang Z; Shi Z; Wang T; Song G; Wang B; Liu Z Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1425-1434. PubMed ID: 34089438 [TBL] [Abstract][Full Text] [Related]
12. COVID-19 CT image segmentation method based on swin transformer. Sun W; Chen J; Yan L; Lin J; Pang Y; Zhang G Front Physiol; 2022; 13():981463. PubMed ID: 36072854 [TBL] [Abstract][Full Text] [Related]
13. Dmbg-Net: Dilated multiresidual boundary guidance network for COVID-19 infection segmentation. Xiang Z; Mao Q; Wang J; Tian Y; Zhang Y; Wang W Math Biosci Eng; 2023 Nov; 20(11):20135-20154. PubMed ID: 38052640 [TBL] [Abstract][Full Text] [Related]
14. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
15. MIS-Net: A deep learning-based multi-class segmentation model for CT images. Li H; Wang C PLoS One; 2024; 19(3):e0299970. PubMed ID: 38478519 [TBL] [Abstract][Full Text] [Related]
16. LungINFseg: Segmenting COVID-19 Infected Regions in Lung CT Images Based on a Receptive-Field-Aware Deep Learning Framework. Kumar Singh V; Abdel-Nasser M; Pandey N; Puig D Diagnostics (Basel); 2021 Jan; 11(2):. PubMed ID: 33498999 [TBL] [Abstract][Full Text] [Related]
17. CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images. Xu X; Wen Y; Zhao L; Zhang Y; Zhao Y; Tang Z; Yang Z; Chen CY Med Phys; 2021 Nov; 48(11):7127-7140. PubMed ID: 34528263 [TBL] [Abstract][Full Text] [Related]
18. Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images. Hu H; Shen L; Guan Q; Li X; Zhou Q; Ruan S Pattern Recognit; 2022 Apr; 124():108452. PubMed ID: 34848897 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale brain tumor segmentation combined with deep supervision. Yan B; Cao M; Gong W; Wei B Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):561-568. PubMed ID: 34894336 [TBL] [Abstract][Full Text] [Related]
20. MSU-Net: Multi-scale Sensitive U-Net based on pixel-edge-region level collaborative loss for nasopharyngeal MRI segmentation. Hao Y; Jiang H; Diao Z; Shi T; Liu L; Li H; Zhang W Comput Biol Med; 2023 Jun; 159():106956. PubMed ID: 37116241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]