These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34812460)

  • 1. Continuous-flow syntheses of alloy nanoparticles.
    Kusada K; Kitagawa H
    Mater Horiz; 2022 Feb; 9(2):547-558. PubMed ID: 34812460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Aspects of Platinum Group Metal-Based Solid-Solution Alloy Nanoparticles: Binary to High-Entropy Alloys.
    Kusada K; Wu D; Kitagawa H
    Chemistry; 2020 Apr; 26(23):5105-5130. PubMed ID: 31863514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-Flow Reactor Synthesis for Homogeneous 1 nm-Sized Extremely Small High-Entropy Alloy Nanoparticles.
    Minamihara H; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Kumara LSR; Ohara K; Sakata O; Kawaguchi S; Kubota Y; Kitagawa H
    J Am Chem Soc; 2022 Jul; 144(26):11525-11529. PubMed ID: 35749353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol.
    Huang R; Zhu H; Su R; Qi W; He Z
    Environ Sci Technol; 2016 Oct; 50(20):11263-11273. PubMed ID: 27623375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced catalytic activity of inhomogeneous Rh-based solid-solution alloy nanoparticles.
    Sarker MSI; Nakamura T; Kameoka S; Hayasaka Y; Yin S; Sato S
    RSC Adv; 2019 Nov; 9(66):38882-38890. PubMed ID: 35540213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning nanoparticle catalysis for the oxygen reduction reaction.
    Guo S; Zhang S; Sun S
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8526-44. PubMed ID: 23775769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications.
    Wu L; Mendoza-Garcia A; Li Q; Sun S
    Chem Rev; 2016 Sep; 116(18):10473-512. PubMed ID: 27355413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in the structure control of Pd-Ru bimetallic nanomaterials.
    Wu D; Kusada K; Kitagawa H
    Sci Technol Adv Mater; 2016; 17(1):583-596. PubMed ID: 27877905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts.
    Wang D; Zhao P; Li Y
    Sci Rep; 2011; 1():37. PubMed ID: 22355556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Synthesis, Characterization, and Properties of Multi-Element Nanoparticles.
    Kusada K; Mukoyoshi M; Wu D; Kitagawa H
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202209616. PubMed ID: 36100576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles.
    Chen Y; Zhan X; Bueno SLA; Shafei IH; Ashberry HM; Chatterjee K; Xu L; Tang Y; Skrabalak SE
    Nanoscale Horiz; 2021 Mar; 6(3):231-237. PubMed ID: 33480921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment.
    Amendola V; Scaramuzza S; Carraro F; Cattaruzza E
    J Colloid Interface Sci; 2017 Mar; 489():18-27. PubMed ID: 27770998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies.
    Wu ZP; Shan S; Zang SQ; Zhong CJ
    Acc Chem Res; 2020 Dec; 53(12):2913-2924. PubMed ID: 33170638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically precise alloy nanoclusters: syntheses, structures, and properties.
    Kang X; Li Y; Zhu M; Jin R
    Chem Soc Rev; 2020 Sep; 49(17):6443-6514. PubMed ID: 32760953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.
    Zaleska-Medynska A; Marchelek M; Diak M; Grabowska E
    Adv Colloid Interface Sci; 2016 Mar; 229():80-107. PubMed ID: 26805520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide.
    He W; Han X; Jia H; Cai J; Zhou Y; Zheng Z
    Sci Rep; 2017 Jan; 7():40103. PubMed ID: 28051159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.
    Zhang C; Oliaee SN; Hwang SY; Kong X; Peng Z
    Nano Lett; 2016 Jan; 16(1):164-9. PubMed ID: 26642094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation.
    Zhan W; Wang J; Wang H; Zhang J; Liu X; Zhang P; Chi M; Guo Y; Guo Y; Lu G; Sun S; Dai S; Zhu H
    J Am Chem Soc; 2017 Jul; 139(26):8846-8854. PubMed ID: 28587462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.