These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34812464)
1. Plasmon-exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions. Krivenkov V; Samokhvalov P; Vasil'evskii IS; Kargin NI; Nabiev I Nanoscale; 2021 Dec; 13(47):19929-19935. PubMed ID: 34812464 [TBL] [Abstract][Full Text] [Related]
2. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Dey S; Zhou Y; Sun Y; Jenkins JA; Kriz D; Suib SL; Chen O; Zou S; Zhao J Nanoscale; 2018 Jan; 10(3):1038-1046. PubMed ID: 29265148 [TBL] [Abstract][Full Text] [Related]
3. Strong increase in the effective two-photon absorption cross-section of excitons in quantum dots due to the nonlinear interaction with localized plasmons in gold nanorods. Krivenkov V; Samokhvalov P; Sánchez-Iglesias A; Grzelczak M; Nabiev I; Rakovich Y Nanoscale; 2021 Mar; 13(8):4614-4623. PubMed ID: 33605966 [TBL] [Abstract][Full Text] [Related]
4. Ultrasensitive Hybrid MoS Zhang S; Wang X; Chen Y; Wu G; Tang Y; Zhu L; Wang H; Jiang W; Sun L; Lin T; Shen H; Hu W; Ge J; Wang J; Meng X; Chu J ACS Appl Mater Interfaces; 2019 Jul; 11(26):23667-23672. PubMed ID: 31144499 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics. Perumal Veeramalai C; Kollu P; Lin G; Zhang X; Li C Nanotechnology; 2021 May; 32(31):. PubMed ID: 33857936 [TBL] [Abstract][Full Text] [Related]
6. Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots. Zhang P; Wang Y; Su X; Zhang Q; Sun M Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607093 [TBL] [Abstract][Full Text] [Related]
7. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles. Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486 [TBL] [Abstract][Full Text] [Related]
8. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot - Purple membrane complexes under two-photon excitation. Krivenkov V; Samokhvalov P; Nabiev I Biosens Bioelectron; 2019 Jul; 137():117-122. PubMed ID: 31085400 [TBL] [Abstract][Full Text] [Related]
9. Core/shell-structured upconversion nanophosphor and cadmium-free quantum-dot bilayer-based near-infrared photodetectors. Hong AR; Kim J; Kim SY; Kim SI; Lee K; Jang HS Opt Lett; 2015 Nov; 40(21):4959-62. PubMed ID: 26512493 [TBL] [Abstract][Full Text] [Related]
10. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246 [TBL] [Abstract][Full Text] [Related]
11. Near full light absorption and full charge collection in 1-micron thick quantum dot photodetector using intercalated graphene monolayer electrodes. Chen W; Ahn S; Balingit M; Wang J; Lockett M; Vazquez-Mena O Nanoscale; 2020 Feb; 12(8):4909-4915. PubMed ID: 32064482 [TBL] [Abstract][Full Text] [Related]
12. Dependence of Photoresponsivity and On/Off Ratio on Quantum Dot Density in Quantum Dot Sensitized MoS Lai YY; Yeh YW; Tzou AJ; Chen YY; Wu YS; Cheng YJ; Kuo HC Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937762 [TBL] [Abstract][Full Text] [Related]
13. Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices. Nguyen HT; Tran TT; Bhatt V; Kumar M; Yun JH J Phys Chem Lett; 2022 May; 13(19):4394-4401. PubMed ID: 35546522 [TBL] [Abstract][Full Text] [Related]
14. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots. Shin SW; Lee KH; Park JS; Kang SJ ACS Appl Mater Interfaces; 2015 Sep; 7(35):19666-71. PubMed ID: 26293387 [TBL] [Abstract][Full Text] [Related]
15. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure. Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841 [TBL] [Abstract][Full Text] [Related]
16. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array. Liu H; Kang Y; Meng T; Tian C; Wei G Nanoscale Res Lett; 2020 May; 15(1):98. PubMed ID: 32372245 [TBL] [Abstract][Full Text] [Related]
17. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Pu SC; Yang MJ; Hsu CC; Lai CW; Hsieh CC; Lin SH; Cheng YM; Chou PT Small; 2006 Nov; 2(11):1308-13. PubMed ID: 17192978 [TBL] [Abstract][Full Text] [Related]
18. Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures. Adnan M; Baumberg JJ; Vijaya Prakash G Sci Rep; 2020 Feb; 10(1):2615. PubMed ID: 32054972 [TBL] [Abstract][Full Text] [Related]
19. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape. Zhu H; Lian T J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343 [TBL] [Abstract][Full Text] [Related]
20. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. Peng M; Liu Y; Li F; Hong X; Liu Y; Wen Z; Liu Z; Ma W; Sun X ACS Appl Mater Interfaces; 2021 Nov; 13(43):51198-51204. PubMed ID: 34672525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]