These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34812610)

  • 1. Real-Time Monitoring of Surface Effects on the Oxygen Reduction Reaction Mechanism for Aprotic Na-O
    Zhang J; Zhang XG; Dong JC; Radjenovic PM; Young DJ; Yao JL; Yuan YX; Tian ZQ; Li JF
    J Am Chem Soc; 2021 Dec; 143(48):20049-20054. PubMed ID: 34812610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct
    Dong JC; Su M; Briega-Martos V; Li L; Le JB; Radjenovic P; Zhou XS; Feliu JM; Tian ZQ; Li JF
    J Am Chem Soc; 2020 Jan; 142(2):715-719. PubMed ID: 31887023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of electric field effects on the adsorption of molecular superoxide species on Au based on density functional theory.
    Rawal SH; McKee WC; Xu Y
    Phys Chem Chem Phys; 2017 Dec; 19(48):32626-32635. PubMed ID: 29192706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen Reduction Reaction on Au Revisited at Different pH Values using in situ Surface-Enhanced Raman Spectroscopy.
    Yu HY; Li XF; Zhang TH; Liu J; Tian JH; Yang R
    ChemSusChem; 2020 May; 13(10):2702-2708. PubMed ID: 32043801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O
    Zhang M; Zou L; Yang C; Chen Y; Shen Z; Bo C
    Nanoscale; 2019 Feb; 11(6):2855-2862. PubMed ID: 30681684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal-O
    Zhang P; Liu L; He X; Liu X; Wang H; He J; Zhao Y
    J Am Chem Soc; 2019 Apr; 141(15):6263-6270. PubMed ID: 30912934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Complex Effects of H
    Ma S; Wang J; Huang J; Zhou Z; Peng Z
    J Phys Chem Lett; 2018 Jun; 9(12):3333-3339. PubMed ID: 29792436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O
    Azaceta E; Lutz L; Grimaud A; Vicent-Luna JM; Hamad S; Yate L; Cabañero G; Grande HJ; Anta JA; Tarascon JM; Tena-Zaera R
    ChemSusChem; 2017 Apr; 10(7):1616-1623. PubMed ID: 28106342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Porous Carbon Spheres for High-Performance Na-O
    Sun B; Kretschmer K; Xie X; Munroe P; Peng Z; Wang G
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28374959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen reactions on Pt{
    Galloway TA; Dong JC; Li JF; Attard G; Hardwick LJ
    Chem Sci; 2019 Mar; 10(10):2956-2964. PubMed ID: 30996874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Electrochemical Oxidation of NaO
    Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.
    Abate II; Thompson LE; Kim HC; Aetukuri NB
    J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional Effects of Cation Additive on Na-O
    Zhao S; Wang C; Du D; Li L; Chou S; Li F; Chen J
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):3205-3211. PubMed ID: 33073428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries.
    Xia C; Black R; Fernandes R; Adams B; Nazar LF
    Nat Chem; 2015 Jun; 7(6):496-501. PubMed ID: 25991528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes.
    Galloway TA; Hardwick LJ
    J Phys Chem Lett; 2016 Jun; 7(11):2119-24. PubMed ID: 27195529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na-O
    Lutz L; Dachraoui W; Demortière A; Johnson LR; Bruce PG; Grimaud A; Tarascon JM
    Nano Lett; 2018 Feb; 18(2):1280-1289. PubMed ID: 29356550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.