These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34812620)

  • 21. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.
    Bandodkar AJ; Hung VW; Jia W; Valdés-Ramírez G; Windmiller JR; Martinez AG; Ramírez J; Chan G; Kerman K; Wang J
    Analyst; 2013 Jan; 138(1):123-8. PubMed ID: 23113321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox probe-based amperometric sensing for solid-contact ion-selective electrodes.
    Sun X; Yin T; Zhang Z; Qin W
    Talanta; 2022 Mar; 239():123114. PubMed ID: 34864532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-printed flow manifold based on potentiometric measurements with solid-state ion-selective electrodes and dedicated to multicomponent water analysis.
    Dębosz M; Wieczorek M; Paluch J; Migdalski J; Baś B; Kościelniak P
    Talanta; 2020 Sep; 217():121092. PubMed ID: 32498863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication, Potentiometric Characterization, and Application of Screen-Printed RuO
    Uppuluri K; Lazouskaya M; Szwagierczak D; Zaraska K; Tamm M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal oxide nanoparticles as solid contact in ion-selective electrodes sensitive to potassium ions.
    Pietrzak K; Krstulović N; Blažeka D; Car J; Malinowski S; Wardak C
    Talanta; 2022 Jun; 243():123335. PubMed ID: 35231717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Disposable Planar Paper-Based Potentiometric Ion-Sensing Platform.
    Hu J; Stein A; Bühlmann P
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7544-7. PubMed ID: 27184778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat.
    Xu J; Zhang Z; Gan S; Gao H; Kong H; Song Z; Ge X; Bao Y; Niu L
    ACS Sens; 2020 Sep; 5(9):2834-2842. PubMed ID: 32854495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review.
    Wardak C; Pietrzak K; Morawska K; Grabarczyk M
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-soil potassium sensor system.
    Lemos SG; Nogueira AR; Torre-Neto A; Parra A; Artigas J; Alonso J
    J Agric Food Chem; 2004 Sep; 52(19):5810-5. PubMed ID: 15366825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability.
    Kozma J; Papp S; Gyurcsányi RE
    Anal Chem; 2022 Jun; 94(23):8249-8257. PubMed ID: 35622612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-Infrared Laser Irradiation-Modulated High-Temperature Solid-Contact Ion-Selective Electrodes: Potentiometric Detection of Ca
    Guo Y; Yin T; Ding J; Qin W
    ACS Sens; 2023 Nov; 8(11):4198-4206. PubMed ID: 37773015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Powered Signal Transduction of Ion-Selective Electrodes to an Electronic Paper Display.
    Wu Y; Bakker E
    ACS Sens; 2022 Oct; 7(10):3201-3207. PubMed ID: 36251606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene Oxide-Poly(vinyl alcohol) Hydrogel-Coated Solid-Contact Ion-Selective Electrodes for Wearable Sweat Potassium Ion Sensing.
    Liu S; Zhong L; Tang Y; Lai M; Wang H; Bao Y; Ma Y; Wang W; Niu L; Gan S
    Anal Chem; 2024 May; 96(21):8594-8603. PubMed ID: 38718350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil.
    Garland NT; McLamore ES; Cavallaro ND; Mendivelso-Perez D; Smith EA; Jing D; Claussen JC
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39124-39133. PubMed ID: 30284450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady-State and Transient Performance of Ion-Sensitive Electrodes Suitable for Wearable and Implantable Electro-Chemical Sensing.
    Jin X; Saha A; Jiang H; Oduncu MR; Yang Q; Sedaghat S; Maize K; Allebach JP; Shakouri A; Glassmaker N; Wei A; Rahimi R; Alam MA
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):96-107. PubMed ID: 34101580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paper-based potentiometric sensing of free bilirubin in blood serum.
    Bell JG; Mousavi MPS; Abd El-Rahman MK; Tan EKW; Homer-Vanniasinkam S; Whitesides GM
    Biosens Bioelectron; 2019 Feb; 126():115-121. PubMed ID: 30396018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Potentiometric Sensors in Real Samples.
    Isildak Ö; Özbek O
    Crit Rev Anal Chem; 2021; 51(3):218-231. PubMed ID: 31928212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functionalizing Carbon Substrates with a Covalently Attached Cobalt Redox Buffer for Calibration-Free Solid-Contact Ion-Selective Electrodes.
    Kim M; Dong XIN; Spindler BD; Bühlmann P; Stein A
    Anal Chem; 2024 May; 96(19):7558-7565. PubMed ID: 38696396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Printed Potentiometric Nitrate Sensors for Use in Soil.
    Baumbauer CL; Goodrich PJ; Payne ME; Anthony T; Beckstoffer C; Toor A; Silver W; Arias AC
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis.
    Ichimura Y; Kuritsubo T; Nagamine K; Nomura A; Shitanda I; Tokito S
    Anal Bioanal Chem; 2021 Mar; 413(7):1883-1891. PubMed ID: 33479820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.