These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34812819)
1. Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study. Akpe SG; Choi SH; Ham HC Phys Chem Chem Phys; 2021 Dec; 23(46):26195-26208. PubMed ID: 34812819 [TBL] [Abstract][Full Text] [Related]
2. First-principles study on the design of nickel based bimetallic catalysts for xylose to xylitol conversion. Akpe SG; Choi SH; Ham HC Phys Chem Chem Phys; 2023 Dec; 26(1):352-364. PubMed ID: 38063502 [TBL] [Abstract][Full Text] [Related]
3. Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst. Xia H; Zhang L; Hu H; Zuo S; Yang L Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31905858 [TBL] [Abstract][Full Text] [Related]
4. Toward Green Production of Chewing Gum and Diet: Complete Hydrogenation of Xylose to Xylitol over Ruthenium Composite Catalysts under Mild Conditions. Liu CJ; Zhu NN; Ma JG; Cheng P Research (Wash D C); 2019; 2019():5178573. PubMed ID: 31912039 [TBL] [Abstract][Full Text] [Related]
5. Density Functional Theory Study of CO Wang Y; Yu M; Zhang X; Gao Y; Liu J; Zhang X; Gong C; Cao X; Ju Z; Peng Y Molecules; 2023 Mar; 28(6):. PubMed ID: 36985824 [TBL] [Abstract][Full Text] [Related]
6. Linear Scaling Relationships for Furan Hydrodeoxygenation over Transition Metal and Bimetallic Surfaces. Kanchan DR; Banerjee A ChemSusChem; 2023 Sep; 16(18):e202300491. PubMed ID: 37314827 [TBL] [Abstract][Full Text] [Related]
7. Identifying Noble Metal Catalysts for the Hydrogenation and Dehydrogenation of Dibenzyltoluene: A Combined Theoretical-Experimental Study. Liu L; Zhu T; Xia M; Zhu Y; Ke H; Yang M; Cheng H; Dong Y Inorg Chem; 2023 Oct; 62(42):17390-17400. PubMed ID: 37815543 [TBL] [Abstract][Full Text] [Related]
8. On the mechanisms of degenerate ligand exchange in [M(CH(3))](+)/CH(4) Couples (M=Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) as explored by mass spectrometric and computational studies: oxidative addition/reductive elimination versus sigma-complex-assisted metathesis. Armélin M; Schlangen M; Schwarz H Chemistry; 2008; 14(17):5229-36. PubMed ID: 18435447 [TBL] [Abstract][Full Text] [Related]
9. Transition-metal single atoms embedded into defective BC Zhou Y; Gao G; Chu W; Wang LW Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443 [TBL] [Abstract][Full Text] [Related]
10. Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts. Vilcocq L; Paez A; Freitas VDS; Veyre L; Fongarland P; Philippe R RSC Adv; 2021 Dec; 11(62):39387-39398. PubMed ID: 35492485 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical investigation of oxidative methane activation on Pd-Pt catalysts. Qi W; Huang Z; Chen Z; Fu L; Zhang Z RSC Adv; 2019 Apr; 9(20):11385-11395. PubMed ID: 35520245 [TBL] [Abstract][Full Text] [Related]
12. A thermodynamic and kinetic study of the catalytic performance of Fe, Mo, Rh and Ru for the electrochemical nitrogen reduction reaction. Shi JL; Xiang SQ; Zhang W; Zhao LB Phys Chem Chem Phys; 2020 Nov; 22(44):25973-25981. PubMed ID: 33165454 [TBL] [Abstract][Full Text] [Related]
13. First-principles Density Functional Theory Elucidation of the Hydrogen Evolution Reaction on TM-promoted TiC Guo H; Gu Kang S; Geol Lee S Chemphyschem; 2023 Apr; 24(8):e202200823. PubMed ID: 36646626 [TBL] [Abstract][Full Text] [Related]
14. Sibunit-Supported Mono- and Bimetallic Catalysts Used in Aqueous-Phase Reforming of Xylitol. Godina LI; Kirilin AV; Tokarev AV; Simakova IL; Murzin DY Ind Eng Chem Res; 2018 Feb; 57(6):2050-2067. PubMed ID: 30270980 [TBL] [Abstract][Full Text] [Related]
15. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456 [TBL] [Abstract][Full Text] [Related]
16. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Wang X; Yuan Q; Li J; Ding F Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913 [TBL] [Abstract][Full Text] [Related]
17. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt(3)M (M=Pt, Ru, Sn, Re, Rh, and Pd). Xu ZF; Wang Y J Phys Chem C Nanomater Interfaces; 2011 Oct; 115(42):20565-20571. PubMed ID: 22102920 [TBL] [Abstract][Full Text] [Related]
18. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces. Ding ZB; Maestri M Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic Ni-Based Catalysts for CO Tsiotsias AI; Charisiou ND; Yentekakis IV; Goula MA Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374436 [TBL] [Abstract][Full Text] [Related]
20. First-principles study on the selective hydrogenation of the C[double bond, length as m-dash]O and C[double bond, length as m-dash]C bonds of acrolein on Pt-M-Pt (M = Pt, Cu, Ni, Co) surfaces. Fan T; Sun M; Ji Y Phys Chem Chem Phys; 2020 Jul; 22(26):14645-14650. PubMed ID: 32572403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]