BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34812893)

  • 1. Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field.
    Hashimoto Y; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K; Asaoka R
    Transl Vis Sci Technol; 2021 Nov; 10(13):28. PubMed ID: 34812893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.
    Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images.
    Asano S; Asaoka R; Murata H; Hashimoto Y; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K
    Sci Rep; 2021 Jan; 11(1):2214. PubMed ID: 33500462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images.
    Asaoka R; Murata H; Hirasawa K; Fujino Y; Matsuura M; Miki A; Kanamoto T; Ikeda Y; Mori K; Iwase A; Shoji N; Inoue K; Yamagami J; Araie M
    Am J Ophthalmol; 2019 Feb; 198():136-145. PubMed ID: 30316669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms.
    Park K; Kim J; Kim S; Shin J
    Graefes Arch Clin Exp Ophthalmol; 2020 Nov; 258(11):2489-2499. PubMed ID: 32845372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography.
    Huang J; Galal G; Mukhin V; Etemadi M; Tanna AP
    J Glaucoma; 2024 Apr; 33(4):246-253. PubMed ID: 38245813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of macular function of glaucomatous eyes by multifocal electroretinograms.
    Hori N; Komori S; Yamada H; Sawada A; Nomura Y; Mochizuki K; Yamamoto T
    Doc Ophthalmol; 2012 Dec; 125(3):235-47. PubMed ID: 22945600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma.
    Igarashi R; Ochiai S; Togano T; Sakaue Y; Suetake A; Iikawa R; Honma Y; Miyamoto D; Fukuchi T
    J Glaucoma; 2020 Jun; 29(6):492-497. PubMed ID: 32205832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression.
    Xu L; Asaoka R; Murata H; Kiwaki T; Zheng Y; Matsuura M; Fujino Y; Tanito M; Mori K; Ikeda Y; Kanamoto T; Yamanishi K
    Ophthalmol Glaucoma; 2021; 4(1):78-88. PubMed ID: 32791238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison among Humphrey field analyzer, Microperimetry, and Heidelberg Retina Tomograph in the evaluation of macula in primary open angle glaucoma.
    Oztürk F; Yavas GF; Küsbeci T; Ermis SS
    J Glaucoma; 2008 Mar; 17(2):118-21. PubMed ID: 18344757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripapillary and Macular Vessel Density Measurement by Optical Coherence Tomography Angiography in Pseudoexfoliation and Primary Open-angle Glaucoma.
    Jo YH; Sung KR; Shin JW
    J Glaucoma; 2020 May; 29(5):381-385. PubMed ID: 32079991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
    Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN
    Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography angiography of the peripapillary capillaries in primary open-angle and normal-tension glaucoma.
    Igarashi R; Ochiai S; Sakaue Y; Suetake A; Iikawa R; Togano T; Miyamoto F; Miyamoto D; Fukuchi T
    PLoS One; 2017; 12(9):e0184301. PubMed ID: 28915256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D Deep Learning System for Detecting Referable Glaucoma Using Full OCT Macular Cube Scans.
    Russakoff DB; Mannil SS; Oakley JD; Ran AR; Cheung CY; Dasari S; Riyazzuddin M; Nagaraj S; Rao HL; Chang D; Chang RT
    Transl Vis Sci Technol; 2020 Feb; 9(2):12. PubMed ID: 32704418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test Conditions in Macular Visual Field Testing in Glaucoma.
    Eura M; Matsumoto C; Hashimoto S; Okuyama S; Takada S; Nomoto H; Tanabe F; Shimomura Y
    J Glaucoma; 2017 Dec; 26(12):1101-1106. PubMed ID: 29045331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Structure-Function Relationship in Glaucomatous Visual Fields by Using a Deep Learning-Based Noise Reduction Approach.
    Asaoka R; Murata H; Matsuura M; Fujino Y; Yanagisawa M; Yamashita T
    Ophthalmol Glaucoma; 2020; 3(3):210-217. PubMed ID: 32672618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT.
    Rolle T; Manerba L; Lanzafame P; Grignolo FM
    Curr Eye Res; 2016 May; 41(5):667-75. PubMed ID: 26200743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.