These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34813063)

  • 1. Expression and In Vivo Loading of De Novo Proteins with Tetrapyrrole Cofactors.
    Curnow P; Anderson JLR
    Methods Mol Biol; 2022; 2397():137-155. PubMed ID: 34813063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Construction of Redox Active Proteins.
    Moser CC; Sheehan MM; Ennist NM; Kodali G; Bialas C; Englander MT; Discher BM; Dutton PL
    Methods Enzymol; 2016; 580():365-88. PubMed ID: 27586341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress.
    Xiong JL; Wang HC; Tan XY; Zhang CL; Naeem MS
    Plant Physiol Biochem; 2018 Mar; 124():88-99. PubMed ID: 29353686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by co-expression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase.
    Jensen PE; Gibson LC; Shephard F; Smith V; Hunter CN
    FEBS Lett; 1999 Jul; 455(3):349-54. PubMed ID: 10437802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice.
    Li Q; Zhu FY; Gao X; Sun Y; Li S; Tao Y; Lo C; Liu H
    Planta; 2014 Oct; 240(4):701-12. PubMed ID: 25037719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies.
    Solomon LA; Witten J; Kodali G; Moser CC; Dutton PL
    J Phys Chem B; 2022 Oct; 126(41):8177-8187. PubMed ID: 36219580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues.
    Lemon CM; Marletta MA
    Acc Chem Res; 2021 Dec; 54(24):4565-4575. PubMed ID: 34890183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria.
    Czarnecki O; Grimm B
    J Exp Bot; 2012 Feb; 63(4):1675-87. PubMed ID: 22231500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins.
    Fiege K; Frankenberg-Dinkel N
    Microb Cell Fact; 2020 Oct; 19(1):190. PubMed ID: 33023596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design principles for chlorophyll-binding sites in helical proteins.
    Braun P; Goldberg E; Negron C; von Jan M; Xu F; Nanda V; Koder RL; Noy D
    Proteins; 2011 Feb; 79(2):463-76. PubMed ID: 21117078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green or red: what stops the traffic in the tetrapyrrole pathway?
    Cornah JE; Terry MJ; Smith AG
    Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the delicate balance of tetrapyrrole biosynthesis.
    Yin L; Bauer CE
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120262. PubMed ID: 23754814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX.
    Kobayashi K; Masuda T; Tajima N; Wada H; Sato N
    Genome Biol Evol; 2014 Aug; 6(8):2141-55. PubMed ID: 25108393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in
    Perkins LJ; Weaver BR; Buller AR; Burstyn JN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis.
    Weinstein JD; Beale SI
    J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline).
    Stasiuk R; Krucoń T; Matlakowska R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.