BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34813072)

  • 21. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates.
    Mezzina MP; Manoli MT; Prieto MA; Nikel PI
    Biotechnol J; 2021 Mar; 16(3):e2000165. PubMed ID: 33085217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440.
    Martínez V; García P; García JL; Prieto MA
    Microb Biotechnol; 2011 Jul; 4(4):533-47. PubMed ID: 21418544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD
    Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Prieto A; Escapa IF; Martínez V; Dinjaski N; Herencias C; de la Peña F; Tarazona N; Revelles O
    Environ Microbiol; 2016 Feb; 18(2):341-57. PubMed ID: 25556983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic Response of
    Możejko-Ciesielska J; Serafim LS
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31795154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive Proteomics Analysis of Polyhydroxyalkanoate (PHA) Biology in Pseudomonas putida KT2440: The Outer Membrane Lipoprotein OprL is a Newly Identified Phasin.
    Kelly S; Tham JL; McKeever K; Dillon E; O'Connell D; Scholz D; Simpson JC; O'Connor K; Narancic T; Cagney G
    Mol Cell Proteomics; 2024 May; 23(5):100765. PubMed ID: 38608840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-Course Proteomic Analysis of
    Możejko-Ciesielska J; Mostek A
    Polymers (Basel); 2019 Apr; 11(5):. PubMed ID: 31035475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida.
    Aparicio T; de Lorenzo V; Martínez-García E
    Biotechnol J; 2018 May; 13(5):e1700161. PubMed ID: 29058367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome Changes in
    Dabrowska D; Mozejko-Ciesielska J; Pokój T; Ciesielski S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375721
    [No Abstract]   [Full Text] [Related]  

  • 31. GacS-dependent regulation of polyhydroxyalkanoate synthesis in Pseudomonas putida CA-3.
    Ryan WJ; O'Leary ND; O'Mahony M; Dobson AD
    Appl Environ Microbiol; 2013 Mar; 79(6):1795-802. PubMed ID: 23291549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.
    Poblete-Castro I; Binger D; Oehlert R; Rohde M
    BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.
    Fonseca P; de la Peña F; Prieto MA
    Int J Biol Macromol; 2014 Nov; 71():14-20. PubMed ID: 24751507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival.
    Sohn SB; Kim TY; Park JM; Lee SY
    Biotechnol J; 2010 Jul; 5(7):739-50. PubMed ID: 20540110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions.
    Urtuvia V; Villegas P; Fuentes S; González M; Seeger M
    Int Microbiol; 2018 Jun; 21(1-2):47-57. PubMed ID: 30810921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
    Escapa IF; del Cerro C; García JL; Prieto MA
    Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply.
    Davis R; Duane G; Kenny ST; Cerrone F; Guzik MW; Babu RP; Casey E; O'Connor KE
    Biotechnol Bioeng; 2015 Apr; 112(4):725-33. PubMed ID: 25311981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targetron-Assisted Delivery of Exogenous DNA Sequences into
    Velázquez E; Al-Ramahi Y; Tellechea-Luzardo J; Krasnogor N; de Lorenzo V
    ACS Synth Biol; 2021 Oct; 10(10):2552-2565. PubMed ID: 34601868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida.
    Wang J; Ma W; Wang Y; Lin L; Wang T; Wang Y; Li Y; Wang X
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10523-10539. PubMed ID: 30338358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.