BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34813305)

  • 1. Subphthalocyanines as Efficient Photosensitizers with Nanomolar Photodynamic Activity against Cancer Cells.
    Demuth J; Gallego L; Kozlikova M; Machacek M; Kucera R; Torres T; Martinez-Diaz MV; Novakova V
    J Med Chem; 2021 Dec; 64(23):17436-17447. PubMed ID: 34813305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-red-absorbing cationic phthalocyanine photosensitizers: synthesis and evaluation of the photodynamic anticancer activity and the mode of cell death induction.
    Machacek M; Cidlina A; Novakova V; Svec J; Rudolf E; Miletin M; Kučera R; Simunek T; Zimcik P
    J Med Chem; 2015 Feb; 58(4):1736-49. PubMed ID: 25599409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers.
    Machacek M; Demuth J; Cermak P; Vavreckova M; Hruba L; Jedlickova A; Kubat P; Simunek T; Novakova V; Zimcik P
    J Med Chem; 2016 Oct; 59(20):9443-9456. PubMed ID: 27682881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phthalocyanines and Tetrapyrazinoporphyrazines with Two Cationic Donuts: High Photodynamic Activity as a Result of Rigid Spatial Arrangement of Peripheral Substituents.
    Ghazal B; Machacek M; Shalaby MA; Novakova V; Zimcik P; Makhseed S
    J Med Chem; 2017 Jul; 60(14):6060-6076. PubMed ID: 28558213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and photodynamic activities of novel silicon(iv) phthalocyanines axially substituted with water soluble groups against HeLa cancer cell line.
    Göksel M; Durmuş M; Biyiklioglu Z
    Dalton Trans; 2021 Feb; 50(7):2570-2584. PubMed ID: 33522544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy.
    Dias LM; Sharifi F; de Keijzer MJ; Mesquita B; Desclos E; Kochan JA; de Klerk DJ; Ernst D; de Haan LR; Franchi LP; van Wijk AC; Scutigliani EM; Cavaco JEB; Tedesco AC; Huang X; Pan W; Ding B; Krawczyk PM; Heger M;
    J Photochem Photobiol B; 2021 Mar; 216():112146. PubMed ID: 33601256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of novel purpurinimides as photosensitizers for photodynamic therapy.
    Cui BC; Yoon I; Li JZ; Lee WK; Shim YK
    Int J Mol Sci; 2014 May; 15(5):8091-105. PubMed ID: 24815070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy.
    Makhseed S; Machacek M; Alfadly W; Tuhl A; Vinodh M; Simunek T; Novakova V; Kubat P; Rudolf E; Zimcik P
    Chem Commun (Camb); 2013 Dec; 49(95):11149-51. PubMed ID: 24040651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy.
    Ke MR; Eastel JM; Ngai KL; Cheung YY; Chan PK; Hui M; Ng DK; Lo PC
    Chem Asian J; 2014 Jul; 9(7):1868-75. PubMed ID: 24799418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of efficient heavy-atom-free photosensitizers for photodynamic therapy of cancer.
    Nguyen VN; Park SJ; Qi S; Ha J; Heo S; Yim Y; Baek G; Lim CS; Lee DJ; Kim HM; Yoon J
    Chem Commun (Camb); 2020 Sep; 56(77):11489-11492. PubMed ID: 32857074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy.
    Halaskova M; Rahali A; Almeida-Marrero V; Machacek M; Kucera R; Jamoussi B; Torres T; Novakova V; de la Escosura A; Zimcik P
    ACS Med Chem Lett; 2021 Mar; 12(3):502-507. PubMed ID: 33738078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy.
    Zhou Y; Cheung YK; Ma C; Zhao S; Gao D; Lo PC; Fong WP; Wong KS; Ng DKP
    J Med Chem; 2018 May; 61(9):3952-3961. PubMed ID: 29681157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.
    Banfi S; Caruso E; Buccafurni L; Murano R; Monti E; Gariboldi M; Papa E; Gramatica P
    J Med Chem; 2006 Jun; 49(11):3293-304. PubMed ID: 16722648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Cathepsin B and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy.
    Tam LKB; Yu L; Wong RCH; Fong WP; Ng DKP; Lo PC
    J Med Chem; 2021 Dec; 64(23):17455-17467. PubMed ID: 34846143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor microenvironment-activated nanosystems with selenophenol substituted BODIPYs as photosensitizers for photodynamic therapy.
    Gao W; Li M; Xu G; Wang R; Shi B; Zhu T; Gao J; Gu X; Shi P; Zhao C
    Bioorg Med Chem Lett; 2020 Jan; 30(2):126854. PubMed ID: 31859157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenorhodamine photosensitizers with the Texas-red core for photodynamic therapy of cancer cells.
    Kryman MW; Davies KS; Linder MK; Ohulchanskyy TY; Detty MR
    Bioorg Med Chem; 2015 Aug; 23(15):4501-4507. PubMed ID: 26105712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, photophysical properties and in vitro photodynamic activity of axially substituted subphthalocyanines.
    Xu H; Jiang XJ; Chan EY; Fong WP; Ng DK
    Org Biomol Chem; 2007 Dec; 5(24):3987-92. PubMed ID: 18043804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-substituted phthalocyanine photosensitizers: design, synthesis, photophysicochemical and photobiological studies.
    Göksel M; Durmuş M; Atilla D
    Photochem Photobiol Sci; 2016 Oct; 15(10):1318-1329. PubMed ID: 27714248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy.
    Wang L; Yin H; Jabed MA; Hetu M; Wang C; Monro S; Zhu X; Kilina S; McFarland SA; Sun W
    Inorg Chem; 2017 Mar; 56(6):3245-3259. PubMed ID: 28263079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.
    Davies KS; Linder MK; Kryman MW; Detty MR
    Bioorg Med Chem; 2016 Sep; 24(17):3908-3917. PubMed ID: 27246858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.