BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34813372)

  • 21. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing.
    Xie K; Yang Y
    Methods Mol Biol; 2019; 1917():63-73. PubMed ID: 30610628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Throughput Gene Mutagenesis Screening Using Base Editing.
    Després PC; Dubé AK; Yachie N; Landry CR
    Methods Mol Biol; 2022; 2477():331-348. PubMed ID: 35524126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts.
    Sant'Ana RRA; Caprestano CA; Nodari RO; Agapito-Tenfen SZ
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32887261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Efficient Strategy for Generating Tissue-specific Binary Transcription Systems in Drosophila by Genome Editing.
    Du L; Zhou A; Sohr A; Roy S
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30295654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application.
    Minkenberg B; Wheatley M; Yang Y
    Prog Mol Biol Transl Sci; 2017; 149():111-132. PubMed ID: 28712493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA-guided gene editing of the murine gammaherpesvirus 68 genome reduces infectious virus production.
    Foreman HC; Kirillov V; Paniccia G; Catalano D; Andrunik T; Gupta S; Krug LT; Zhang Y
    PLoS One; 2021; 16(6):e0252313. PubMed ID: 34086743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.
    Yoder KE; Bundschuh R
    Sci Rep; 2016 Jul; 6():29530. PubMed ID: 27404981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription.
    Wu C; Chen Y; Qiu Y; Niu X; Zhu N; Chen J; Yao H; Wang W; Ma Y
    Biotechnol Lett; 2020 Jul; 42(7):1203-1210. PubMed ID: 32300998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei.
    Zou G; Zhou Z
    Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9 Genome Editing in Drosophila.
    Gratz SJ; Rubinstein CD; Harrison MM; Wildonger J; O'Connor-Giles KM
    Curr Protoc Mol Biol; 2015 Jul; 111():31.2.1-31.2.20. PubMed ID: 26131852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and application of the transformer base editor in mammalian cells and mice.
    Han W; Gao BQ; Zhu J; He Z; Li J; Yang L; Chen J
    Nat Protoc; 2023 Nov; 18(11):3194-3228. PubMed ID: 37794072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.