These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34813476)
61. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot]. Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386 [TBL] [Abstract][Full Text] [Related]
62. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. Koo D; Chang PH; Sohn MK; Shin JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701 [TBL] [Abstract][Full Text] [Related]
63. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy. Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097 [TBL] [Abstract][Full Text] [Related]
64. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton. Grimm F; Gharabaghi A Front Neurosci; 2016; 10():284. PubMed ID: 27445658 [TBL] [Abstract][Full Text] [Related]
65. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Lefeber N; Swinnen E; Kerckhofs E Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641 [TBL] [Abstract][Full Text] [Related]
66. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot. Abedi M; Moghaddam MM; Fallah D Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402 [TBL] [Abstract][Full Text] [Related]
67. Admittance control of an upper limb exoskeleton--reduction of energy exchange. Kim H; Miller LM; Li Z; Roldan JR; Rosen J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6467-70. PubMed ID: 23367410 [TBL] [Abstract][Full Text] [Related]
68. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation. Godfrey SB; Holley RJ; Lum PS Am J Phys Med Rehabil; 2013 Nov; 92(11):947-58. PubMed ID: 23900016 [TBL] [Abstract][Full Text] [Related]
69. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. Qian Q; Nam C; Guo Z; Huang Y; Hu X; Ng SC; Zheng Y; Poon W J Neuroeng Rehabil; 2019 Jun; 16(1):64. PubMed ID: 31159822 [TBL] [Abstract][Full Text] [Related]
70. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952 [TBL] [Abstract][Full Text] [Related]
71. An intention driven hand functions task training robotic system. Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247 [TBL] [Abstract][Full Text] [Related]
72. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
73. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Kayabinar B; Alemdaroğlu-Gürbüz İ; Yilmaz Ö Eur J Phys Rehabil Med; 2021 Apr; 57(2):227-237. PubMed ID: 33541040 [TBL] [Abstract][Full Text] [Related]
74. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. Singh N; Saini M; Kumar N; Srivastava MVP; Mehndiratta A J Neuroeng Rehabil; 2021 May; 18(1):76. PubMed ID: 33957937 [TBL] [Abstract][Full Text] [Related]
75. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity. Ismail R; Ariyanto M; Setiawan JD; Hidayat T; Paryanto ; Nuswantara LK HardwareX; 2024 Jun; 18():e00537. PubMed ID: 38784668 [TBL] [Abstract][Full Text] [Related]
76. Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks. Topini A; Sansom W; Secciani N; Bartalucci L; Ridolfi A; Allotta B Front Neurorobot; 2021; 15():789743. PubMed ID: 35095457 [TBL] [Abstract][Full Text] [Related]
77. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach. Park W; Jeong W; Kwon GH; Kim YH; Kim L IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299 [TBL] [Abstract][Full Text] [Related]
78. Knee exoskeleton enhanced with artificial intelligence to provide assistance-as-needed. Lyu M; Chen WH; Ding X; Wang J Rev Sci Instrum; 2019 Sep; 90(9):094101. PubMed ID: 31575258 [TBL] [Abstract][Full Text] [Related]
79. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy. Nathan DE; Johnson MJ; McGuire JR J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493 [TBL] [Abstract][Full Text] [Related]
80. Studying the implementation of iterative impedance control for assistive hand rehabilitation using an exoskeleton. Martineau T; Vaidyanathan R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1500-1505. PubMed ID: 28814032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]