These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 34813479)

  • 1. Focus, Fusion, and Rectify: Context-Aware Learning for COVID-19 Lung Infection Segmentation.
    Wang R; Ji C; Zhang Y; Li Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):12-24. PubMed ID: 34813479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-task semantic segmentation of CT images for COVID-19 infections using DeepLabV3+ based on dilated residual network.
    Polat H
    Phys Eng Sci Med; 2022 Jun; 45(2):443-455. PubMed ID: 35286619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation.
    Ma J; Wang Y; An X; Ge C; Yu Z; Chen J; Zhu Q; Dong G; He J; He Z; Cao T; Zhu Y; Nie Z; Yang X
    Med Phys; 2021 Mar; 48(3):1197-1210. PubMed ID: 33354790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images.
    Qi Q; Qi S; Wu Y; Li C; Tian B; Xia S; Ren J; Yang L; Wang H; Yu H
    Comput Biol Med; 2022 Feb; 141():105182. PubMed ID: 34979404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network.
    Zhang J; Ding X; Hu D; Jiang Y
    Sci Rep; 2022 Feb; 12(1):1847. PubMed ID: 35115573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiniSeg: An Extremely Minimum Network Based on Lightweight Multiscale Learning for Efficient COVID-19 Segmentation.
    Qiu Y; Liu Y; Li S; Xu J
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8570-8584. PubMed ID: 37015641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free coronavirus disease 2019 lesion segmentation based on synthetic healthy lung image subtraction.
    Fang C; Liu Y; Liu Y; Liu M; Qiu X; Li Y; Wen J; Yang Y
    Med Phys; 2022 Jul; 49(7):4632-4641. PubMed ID: 35397134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAD systems for COVID-19 diagnosis and disease stage classification by segmentation of infected regions from CT images.
    Alshayeji MH; ChandraBhasi Sindhu S; Abed S
    BMC Bioinformatics; 2022 Jul; 23(1):264. PubMed ID: 35794537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-supervised learning for an improved diagnosis of COVID-19 in CT images.
    Han CH; Kim M; Kwak JT
    PLoS One; 2021; 16(4):e0249450. PubMed ID: 33793650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution.
    Zhao X; Zhang P; Song F; Fan G; Sun Y; Wang Y; Tian Z; Zhang L; Zhang G
    Comput Biol Med; 2021 Aug; 135():104526. PubMed ID: 34146799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing infection distributions and longitudinal evolution patterns in lung CT images.
    Gu D; Chen L; Shan F; Xia L; Liu J; Mo Z; Yan F; Song B; Gao Y; Cao X; Chen Y; Shao Y; Han M; Wang B; Liu G; Wang Q; Shi F; Shen D; Xue Z
    BMC Med Imaging; 2021 Mar; 21(1):57. PubMed ID: 33757431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COVID-DAI: A novel framework for COVID-19 detection and infection growth estimation using computed tomography images.
    Nazir T; Nawaz M; Javed A; Malik KM; Saudagar AKJ; Khan MB; Abul Hasanat MH; AlTameem A; AlKathami M
    Microsc Res Tech; 2022 Jun; 85(6):2313-2330. PubMed ID: 35194866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images.
    Enshaei N; Oikonomou A; Rafiee MJ; Afshar P; Heidarian S; Mohammadi A; Plataniotis KN; Naderkhani F
    Sci Rep; 2022 Feb; 12(1):3212. PubMed ID: 35217712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmenting lung lesions of COVID-19 from CT images via pyramid pooling improved Unet.
    Ma Y; Feng P; He P; Ren Y; Guo X; Yu X; Wei B
    Biomed Phys Eng Express; 2021 May; 7(4):. PubMed ID: 33979791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation.
    Wu YH; Gao SH; Mei J; Xu J; Fan DP; Zhang RG; Cheng MM
    IEEE Trans Image Process; 2021; 30():3113-3126. PubMed ID: 33600316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic clustering method to segment COVID-19 CT images.
    Abd Elaziz M; A A Al-Qaness M; Abo Zaid EO; Lu S; Ali Ibrahim R; A Ewees A
    PLoS One; 2021; 16(1):e0244416. PubMed ID: 33417610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images.
    Li W; Qin S; Li F; Wang L
    Med Phys; 2021 Jan; 48(1):329-341. PubMed ID: 33222222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients.
    Xie W; Jacobs C; Charbonnier JP; van Ginneken B
    Med Image Anal; 2023 May; 86():102771. PubMed ID: 36848720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
    V J S; D JF
    Comput Math Methods Med; 2021; 2021():9269173. PubMed ID: 34795794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient COVID-19 Segmentation from CT Slices Exploiting Semantic Segmentation with Integrated Attention Mechanism.
    Budak Ü; Çıbuk M; Cömert Z; Şengür A
    J Digit Imaging; 2021 Apr; 34(2):263-272. PubMed ID: 33674979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.