These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34813594)
1. CStone: A de novo transcriptome assembler for short-read data that identifies non-chimeric contigs based on underlying graph structure. Linheiro R; Archer J PLoS Comput Biol; 2021 Nov; 17(11):e1009631. PubMed ID: 34813594 [TBL] [Abstract][Full Text] [Related]
2. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix. Yoon S; Kim D; Kang K; Park WJ BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798 [TBL] [Abstract][Full Text] [Related]
3. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424 [TBL] [Abstract][Full Text] [Related]
4. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs. Westrin KJ; Kretzschmar WW; Emanuelsson O BMC Bioinformatics; 2024 Feb; 25(1):54. PubMed ID: 38302873 [TBL] [Abstract][Full Text] [Related]
5. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. Nakasugi K; Crowhurst R; Bally J; Waterhouse P PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. Hölzer M; Marz M Gigascience; 2019 May; 8(5):. PubMed ID: 31077315 [TBL] [Abstract][Full Text] [Related]
7. Comparative performance of transcriptome assembly methods for non-model organisms. Huang X; Chen XG; Armbruster PA BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550 [TBL] [Abstract][Full Text] [Related]
8. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data. Sze SH; Tarone AM BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000 [TBL] [Abstract][Full Text] [Related]
9. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419 [TBL] [Abstract][Full Text] [Related]
10. Compacta: a fast contig clustering tool for de novo assembled transcriptomes. Razo-Mendivil FG; Martínez O; Hayano-Kanashiro C BMC Genomics; 2020 Feb; 21(1):148. PubMed ID: 32046653 [TBL] [Abstract][Full Text] [Related]
11. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. Yang Y; Smith SA BMC Genomics; 2013 May; 14():328. PubMed ID: 23672450 [TBL] [Abstract][Full Text] [Related]
12. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms. Mbandi SK; Hesse U; van Heusden P; Christoffels A BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035 [TBL] [Abstract][Full Text] [Related]
13. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease. Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990 [TBL] [Abstract][Full Text] [Related]
14. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration. Shmakov NА Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701 [TBL] [Abstract][Full Text] [Related]
15. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads. Lima L; Sinaimeri B; Sacomoto G; Lopez-Maestre H; Marchet C; Miele V; Sagot MF; Lacroix V Algorithms Mol Biol; 2017; 12():2. PubMed ID: 28250805 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of de novo transcriptome assembly. Clarke K; Yang Y; Marsh R; Xie L; Zhang KK Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031 [TBL] [Abstract][Full Text] [Related]
17. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. Duan J; Xia C; Zhao G; Jia J; Kong X BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638 [TBL] [Abstract][Full Text] [Related]
18. Challenges and advances for transcriptome assembly in non-model species. Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057 [TBL] [Abstract][Full Text] [Related]
19. Compacting and correcting Trinity and Oases RNA-Seq Cabau C; Escudié F; Djari A; Guiguen Y; Bobe J; Klopp C PeerJ; 2017; 5():e2988. PubMed ID: 28224052 [TBL] [Abstract][Full Text] [Related]
20. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms. Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]