BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34813594)

  • 1. CStone: A de novo transcriptome assembler for short-read data that identifies non-chimeric contigs based on underlying graph structure.
    Linheiro R; Archer J
    PLoS Comput Biol; 2021 Nov; 17(11):e1009631. PubMed ID: 34813594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance.
    Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M
    BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs.
    Westrin KJ; Kretzschmar WW; Emanuelsson O
    BMC Bioinformatics; 2024 Feb; 25(1):54. PubMed ID: 38302873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana.
    Nakasugi K; Crowhurst R; Bally J; Waterhouse P
    PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data.
    Sze SH; Tarone AM
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compacta: a fast contig clustering tool for de novo assembled transcriptomes.
    Razo-Mendivil FG; Martínez O; Hayano-Kanashiro C
    BMC Genomics; 2020 Feb; 21(1):148. PubMed ID: 32046653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics.
    Yang Y; Smith SA
    BMC Genomics; 2013 May; 14():328. PubMed ID: 23672450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration.
    Shmakov NА
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.
    Lima L; Sinaimeri B; Sacomoto G; Lopez-Maestre H; Marchet C; Miele V; Sagot MF; Lacroix V
    Algorithms Mol Biol; 2017; 12():2. PubMed ID: 28250805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compacting and correcting Trinity and Oases RNA-Seq
    Cabau C; Escudié F; Djari A; Guiguen Y; Bobe J; Klopp C
    PeerJ; 2017; 5():e2988. PubMed ID: 28224052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.