BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34813594)

  • 21. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.
    Salem M; Paneru B; Al-Tobasei R; Abdouni F; Thorgaard GH; Rexroad CE; Yao J
    PLoS One; 2015; 10(3):e0121778. PubMed ID: 25793877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes.
    Ono H; Ishii K; Kozaki T; Ogiwara I; Kanekatsu M; Yamada T
    BMC Genomics; 2015 Dec; 16():1031. PubMed ID: 26637306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Bellerophon pipeline, improving de novo transcriptomes and removing chimeras.
    Kerkvliet J; de Fouchier A; van Wijk M; Groot AT
    Ecol Evol; 2019 Sep; 9(18):10513-10521. PubMed ID: 31624564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.
    Tulin S; Aguiar D; Istrail S; Smith J
    Evodevo; 2013; 4():16. PubMed ID: 23731568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data.
    Bushmanova E; Antipov D; Lapidus A; Prjibelski AD
    Gigascience; 2019 Sep; 8(9):. PubMed ID: 31494669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TransLiG: a de novo transcriptome assembler that uses line graph iteration.
    Liu J; Yu T; Mu Z; Li G
    Genome Biol; 2019 Apr; 20(1):81. PubMed ID: 31014374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. STAble: a novel approach to de novo assembly of RNA-seq data and its application in a metabolic model network based metatranscriptomic workflow.
    Saggese I; Bona E; Conway M; Favero F; Ladetto M; Liò P; Manzini G; Mignone F
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):184. PubMed ID: 30066630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comparison of Resources for the Annotation of a De Novo Assembled Transcriptome in the Molting Gland (Y-Organ) of the Blackback Land Crab, Gecarcinus lateralis.
    Das S; Mykles DL
    Integr Comp Biol; 2016 Dec; 56(6):1103-1112. PubMed ID: 27549198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation.
    Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T
    BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.
    Amin S; Prentis PJ; Gilding EK; Pavasovic A
    BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
    Celaj A; Markle J; Danska J; Parkinson J
    Microbiome; 2014; 2():39. PubMed ID: 25411636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data.
    Chang Z; Li G; Liu J; Zhang Y; Ashby C; Liu D; Cramer CL; Huang X
    Genome Biol; 2015 Feb; 16(1):30. PubMed ID: 25723335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DTA-SiST: de novo transcriptome assembly by using simplified suffix trees.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):698. PubMed ID: 31874618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A scalable and accurate targeted gene assembly tool (SAT-Assembler) for next-generation sequencing data.
    Zhang Y; Sun Y; Cole JR
    PLoS Comput Biol; 2014 Aug; 10(8):e1003737. PubMed ID: 25122209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.