These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34813644)

  • 1. Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning.
    Womelsdorf T; Watson MR; Tiesinga P
    J Cogn Neurosci; 2021 Dec; 34(1):79-107. PubMed ID: 34813644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention to Stimuli of Learned versus Innate Biological Value Relies on Separate Neural Systems.
    Kaskan PM; Nicholas MA; Dean AM; Murray EA
    J Neurosci; 2022 Dec; 42(49):9242-9252. PubMed ID: 36319119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change in the relative contributions of habit and working memory facilitates serial reversal learning expertise in rhesus monkeys.
    Hassett TC; Hampton RR
    Anim Cogn; 2017 May; 20(3):485-497. PubMed ID: 28185097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Tortoise and the Hare: Interactions between Reinforcement Learning and Working Memory.
    Collins AGE
    J Cogn Neurosci; 2018 Oct; 30(10):1422-1432. PubMed ID: 29346018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior Cingulate Cortex Causally Supports Meta-Learning.
    Treuting RL; Boroujeni KB; Gerrity CG; Tiesinga P; Womelsdorf T
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the anterior cingulate cortex in choices based on reward value and reward contingency.
    Chudasama Y; Daniels TE; Gorrin DP; Rhodes SE; Rudebeck PH; Murray EA
    Cereb Cortex; 2013 Dec; 23(12):2884-98. PubMed ID: 22944530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.
    Balcarras M; Ardid S; Kaping D; Everling S; Womelsdorf T
    J Cogn Neurosci; 2016 Feb; 28(2):333-49. PubMed ID: 26488586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventral striatum lesions do not affect reinforcement learning with deterministic outcomes on slow time scales.
    Vicario-Feliciano R; Murray EA; Averbeck BB
    Behav Neurosci; 2017 Oct; 131(5):385-91. PubMed ID: 28805428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gains and Losses Affect Learning Differentially at Low and High Attentional Load.
    Boroujeni KB; Watson M; Womelsdorf T
    J Cogn Neurosci; 2022 Sep; 34(10):1952-1971. PubMed ID: 35802604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
    Rothenhoefer KM; Costa VD; Bartolo R; Vicario-Feliciano R; Murray EA; Averbeck BB
    J Neurosci; 2017 Jul; 37(29):6902-6914. PubMed ID: 28626011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection history in context: Evidence for the role of reinforcement learning in biasing attention.
    Anderson BA; Britton MK
    Atten Percept Psychophys; 2019 Nov; 81(8):2666-2672. PubMed ID: 31309530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired flexible reward learning in ADHD patients is associated with blunted reinforcement sensitivity and neural signals in ventral striatum and parietal cortex.
    Aster HC; Waltmann M; Busch A; Romanos M; Gamer M; Maria van Noort B; Beck A; Kappel V; Deserno L
    Neuroimage Clin; 2024; 42():103588. PubMed ID: 38471434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of methylphenidate on reinforcement learning depend on working memory capacity.
    Rostami Kandroodi M; Cook JL; Swart JC; Froböse MI; Geurts DEM; Vahabie AH; Nili Ahmadabadi M; Cools R; den Ouden HEM
    Psychopharmacology (Berl); 2021 Dec; 238(12):3569-3584. PubMed ID: 34676440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depressive symptoms bias the prediction-error enhancement of memory towards negative events in reinforcement learning.
    Rouhani N; Niv Y
    Psychopharmacology (Berl); 2019 Aug; 236(8):2425-2435. PubMed ID: 31346654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signed and unsigned reward prediction errors dynamically enhance learning and memory.
    Rouhani N; Niv Y
    Elife; 2021 Mar; 10():. PubMed ID: 33661094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.