These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34813644)

  • 21. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
    Izquierdo A; Murray EA
    J Neurosci; 2007 Jan; 27(5):1054-62. PubMed ID: 17267559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of testosterone on attention and memory for emotional stimuli in male rhesus monkeys.
    King HM; Kurdziel LB; Meyer JS; Lacreuse A
    Psychoneuroendocrinology; 2012 Mar; 37(3):396-409. PubMed ID: 21820809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sticky me: Self-relevance slows reinforcement learning.
    Golubickis M; Macrae CN
    Cognition; 2022 Oct; 227():105207. PubMed ID: 35752015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning attentional templates for value-based decision-making.
    Jahn CI; Markov NT; Morea B; Daw ND; Ebitz RB; Buschman TJ
    Cell; 2024 Mar; 187(6):1476-1489.e21. PubMed ID: 38401541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neurocognitive role of working memory load when Pavlovian motivational control affects instrumental learning.
    Park H; Doh H; Lee E; Park H; Ahn WY
    PLoS Comput Biol; 2023 Dec; 19(12):e1011692. PubMed ID: 38064498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aberrant reward learning, but not negative reinforcement learning, is related to depressive symptoms: an attentional perspective.
    Hertz-Palmor N; Rozenblit D; Lavi S; Zeltser J; Kviatek Y; Lazarov A
    Psychol Med; 2024 Mar; 54(4):794-807. PubMed ID: 37642177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinforcement learning and working memory in mood disorders: A computational analysis in a developmental transdiagnostic sample.
    Cheng Z; Moser AD; Jones M; Kaiser RH
    J Affect Disord; 2024 Jan; 344():423-431. PubMed ID: 37839471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intact Reinforcement Learning But Impaired Attentional Control During Multidimensional Probabilistic Learning in Older Adults.
    Daniel R; Radulescu A; Niv Y
    J Neurosci; 2020 Jan; 40(5):1084-1096. PubMed ID: 31826943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks.
    Fischer B; Wegener D
    J Neurophysiol; 2018 Jul; 120(1):115-128. PubMed ID: 29617217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning.
    McDougle SD; Collins AGE
    Psychon Bull Rev; 2021 Feb; 28(1):20-39. PubMed ID: 32710256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Working Memory Load Enhances the Attentional Capture of Low Reward History.
    Wu Y; Li T; Qu Z
    Front Psychol; 2019; 10():2722. PubMed ID: 31866909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signals of anticipation of reward and of mean reward rates in the human brain.
    Viviani R; Dommes L; Bosch J; Steffens M; Paul A; Schneider KL; Stingl JC; Beschoner P
    Sci Rep; 2020 Mar; 10(1):4287. PubMed ID: 32152378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Working memory contributions to reinforcement learning impairments in schizophrenia.
    Collins AG; Brown JK; Gold JM; Waltz JA; Frank MJ
    J Neurosci; 2014 Oct; 34(41):13747-56. PubMed ID: 25297101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attentional biases and memory for emotional stimuli in men and male rhesus monkeys.
    Lacreuse A; Schatz K; Strazzullo S; King HM; Ready R
    Anim Cogn; 2013 Nov; 16(6):861-71. PubMed ID: 23463380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space.
    Hallquist MN; Hwang K; Luna B; Dombrovski AY
    Sci Adv; 2024 Feb; 10(8):eadj2219. PubMed ID: 38394198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rare rewards amplify dopamine responses.
    Rothenhoefer KM; Hong T; Alikaya A; Stauffer WR
    Nat Neurosci; 2021 Apr; 24(4):465-469. PubMed ID: 33686298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Working memory capacity estimates moderate value learning for outcome-irrelevant features.
    Ben-Artzi I; Luria R; Shahar N
    Sci Rep; 2022 Nov; 12(1):19677. PubMed ID: 36385131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.