BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34813698)

  • 1. Enhanced Sampling Approach to the Induced-Fit Docking Problem in Protein-Ligand Binding: The Case of Mono-ADP-Ribosylation Hydrolase Inhibitors.
    Zhao Q; Capelli R; Carloni P; Lüscher B; Li J; Rossetti G
    J Chem Theory Comput; 2021 Dec; 17(12):7899-7911. PubMed ID: 34813698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the MacroD1-mediated hydrolysis of ADP-ribosylation.
    Yang X; Ma Y; Li Y; Dong Y; Yu LL; Wang H; Guo L; Wu C; Yu X; Liu X
    DNA Repair (Amst); 2020 Oct; 94():102899. PubMed ID: 32683309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural Characterisation of
    Crawford K; Oliver PL; Agnew T; Hunn BHM; Ahel I
    Cells; 2021 Feb; 10(2):. PubMed ID: 33578760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple crystal forms of human MacroD2.
    Wazir S; Maksimainen MM; Lehtiö L
    Acta Crystallogr F Struct Biol Commun; 2020 Oct; 76(Pt 10):477-482. PubMed ID: 33006575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology.
    Haikarainen T; Maksimainen MM; Obaji E; Lehtiö L
    SLAS Discov; 2018 Mar; 23(3):255-263. PubMed ID: 29028410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying Catabolism of Protein ADP-Ribosylation.
    Palazzo L; James DI; Waddell ID; Ahel I
    Methods Mol Biol; 2017; 1608():415-430. PubMed ID: 28695524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease.
    Lüscher B; Bütepage M; Eckei L; Krieg S; Verheugd P; Shilton BH
    Chem Rev; 2018 Feb; 118(3):1092-1136. PubMed ID: 29172462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.
    Rosenthal F; Feijs KL; Frugier E; Bonalli M; Forst AH; Imhof R; Winkler HC; Fischer D; Caflisch A; Hassa PO; Lüscher B; Hottiger MO
    Nat Struct Mol Biol; 2013 Apr; 20(4):502-7. PubMed ID: 23474714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective monitoring of the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes.
    Kasson S; Dharmapriya N; Kim IK
    PLoS One; 2021; 16(6):e0254022. PubMed ID: 34191856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology.
    Feijs KL; Verheugd P; Lüscher B
    FEBS J; 2013 Aug; 280(15):3519-29. PubMed ID: 23639026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.
    Bindesbøll C; Tan S; Bott D; Cho T; Tamblyn L; MacPherson L; Grønning-Wang L; Nebb HI; Matthews J
    Biochem J; 2016 Apr; 473(7):899-910. PubMed ID: 26814197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical ADP-ribosylation: mono-ADPr-peptides and oligo-ADP-ribose.
    Liu Q; van der Marel GA; Filippov DV
    Org Biomol Chem; 2019 Jun; 17(22):5460-5474. PubMed ID: 31112180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snapshots of ADP-ribose bound to Getah virus macro domain reveal an intriguing choreography.
    Ferreira-Ramos AS; Sulzenbacher G; Canard B; Coutard B
    Sci Rep; 2020 Sep; 10(1):14422. PubMed ID: 32879358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase.
    Kim IK; Stegeman RA; Brosey CA; Ellenberger T
    J Biol Chem; 2015 Feb; 290(6):3775-83. PubMed ID: 25477519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation.
    Jankevicius G; Hassler M; Golia B; Rybin V; Zacharias M; Timinszky G; Ladurner AG
    Nat Struct Mol Biol; 2013 Apr; 20(4):508-14. PubMed ID: 23474712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepSADPr: A hybrid-learning architecture for serine ADP-ribosylation site prediction.
    Sha Y; Ma C; Wei X; Liu Y; Chen Y; Li L
    Methods; 2022 Jul; 203():575-583. PubMed ID: 34560250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations.
    Zhu J; Lv Y; Han X; Xu D; Han W
    Sci Rep; 2017 Sep; 7(1):12439. PubMed ID: 28963484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catching mono- and poly-ADP-ribose readers with synthetic ADP-ribose baits.
    Cohen MS
    Mol Cell; 2021 Nov; 81(21):4351-4353. PubMed ID: 34739826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.