These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34813731)
1. Soil bacteria protect fungi from phenazines by acting as toxin sponges. Dahlstrom KM; Newman DK Curr Biol; 2022 Jan; 32(2):275-288.e5. PubMed ID: 34813731 [TBL] [Abstract][Full Text] [Related]
2. Prevalence and Correlates of Phenazine Resistance in Culturable Bacteria from a Dryland Wheat Field. Perry EK; Newman DK Appl Environ Microbiol; 2022 Mar; 88(6):e0232021. PubMed ID: 35138927 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity. Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234 [TBL] [Abstract][Full Text] [Related]
4. Nitrate Reduction Stimulates and Is Stimulated by Phenazine-1-Carboxylic Acid Oxidation by Citrobacter portucalensis MBL. Tsypin LM; Newman DK mBio; 2021 Aug; 12(4):e0226521. PubMed ID: 34465028 [TBL] [Abstract][Full Text] [Related]
5. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics. Biessy A; Filion M Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978 [TBL] [Abstract][Full Text] [Related]
6. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Bakker PA; Glandorf DC; Viebahn M; Ouwens TW; Smit E; Leeflang P; Wernars K; Thomashow LS; Thomas-Oates JE; van Loon LC Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):617-24. PubMed ID: 12448757 [TBL] [Abstract][Full Text] [Related]
7. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum. Costa KC; Moskatel LS; Meirelles LA; Newman DK J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483162 [TBL] [Abstract][Full Text] [Related]
8. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Puopolo G; Masi M; Raio A; Andolfi A; Zoina A; Cimmino A; Evidente A Nat Prod Res; 2013; 27(11):956-66. PubMed ID: 22724439 [TBL] [Abstract][Full Text] [Related]
9. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Yu JM; Wang D; Pierson LS; Pierson EA Plant Pathol J; 2018 Feb; 34(1):44-58. PubMed ID: 29422787 [No Abstract] [Full Text] [Related]
10. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Glandorf DC; Verheggen P; Jansen T; Jorritsma JW; Smit E; Leeflang P; Wernars K; Thomashow LS; Laureijs E; Thomas-Oates JE; Bakker PA; van Loon LC Appl Environ Microbiol; 2001 Aug; 67(8):3371-8. PubMed ID: 11472906 [TBL] [Abstract][Full Text] [Related]
11. Inter-Kingdom Networks of Canola Microbiome Reveal Bradyrhizobium as Keystone Species and Underline the Importance of Bulk Soil in Microbial Studies to Enhance Canola Production. Floc'h JB; Hamel C; Laterrière M; Tidemann B; St-Arnaud M; Hijri M Microb Ecol; 2022 Nov; 84(4):1166-1181. PubMed ID: 34727198 [TBL] [Abstract][Full Text] [Related]
12. Phenazine-1-Carboxylic Acid-Producing Bacteria Enhance the Reactivity of Iron Minerals in Dryland and Irrigated Wheat Rhizospheres. LeTourneau MK; Marshall MJ; Grant M; Freeze PM; Strawn DG; Lai B; Dohnalkova AC; Harsh JB; Weller DM; Thomashow LS Environ Sci Technol; 2019 Dec; 53(24):14273-14284. PubMed ID: 31751506 [TBL] [Abstract][Full Text] [Related]
13. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. Delaney SM; Mavrodi DV; Bonsall RF; Thomashow LS J Bacteriol; 2001 Jan; 183(1):318-27. PubMed ID: 11114932 [TBL] [Abstract][Full Text] [Related]
15. Eucalypt species drive rhizosphere bacterial and fungal community assembly but soil phosphorus availability rearranges the microbiome. Bulgarelli RG; Leite MFA; de Hollander M; Mazzafera P; Andrade SAL; Kuramae EE Sci Total Environ; 2022 Aug; 836():155667. PubMed ID: 35513142 [TBL] [Abstract][Full Text] [Related]
16. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. Zhou L; Jiang HX; Sun S; Yang DD; Jin KM; Zhang W; He YW World J Microbiol Biotechnol; 2016 Mar; 32(3):50. PubMed ID: 26873561 [TBL] [Abstract][Full Text] [Related]
17. Phenazine-1-Carboxylic Acid (PCA), Produced for the First Time as an Antifungal Metabolite by Cimmino A; Bahmani Z; Castaldi S; Masi M; Isticato R; Abdollahzadeh J; Amini J; Evidente A J Agric Food Chem; 2021 Oct; 69(41):12143-12147. PubMed ID: 34623150 [TBL] [Abstract][Full Text] [Related]
18. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. Dar D; Thomashow LS; Weller DM; Newman DK Elife; 2020 Sep; 9():. PubMed ID: 32930660 [TBL] [Abstract][Full Text] [Related]
19. Effects of saline-alkali stress on bacterial and fungal community diversity in Leymus chinensis rhizosphere soil. Liu B; Hu Y; Wang Y; Xue H; Li Z; Li M Environ Sci Pollut Res Int; 2022 Oct; 29(46):70000-70013. PubMed ID: 35579830 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of Three Potato Pathogens by Phenazine-Producing Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]